コード例 #1
0
    def load_task(self):
        print("### Loading dataset: {}".format(self.config["task"]["dataset"]))

        self.parallel_collater = ParallelCollater(1)
        if self.config["task"]["dataset"] == "single_point_lmdb":
            self.train_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])

            self.train_sampler = DistributedSampler(
                self.train_dataset,
                num_replicas=distutils.get_world_size(),
                rank=distutils.get_rank(),
                shuffle=True,
            )
            self.train_loader = DataLoader(
                self.train_dataset,
                batch_size=self.config["optim"]["batch_size"],
                collate_fn=self.parallel_collater,
                num_workers=self.config["optim"]["num_workers"],
                pin_memory=True,
                sampler=self.train_sampler,
            )

            self.val_loader = self.test_loader = None
            self.val_sampler = None

            if "val_dataset" in self.config:
                self.val_dataset = registry.get_dataset_class(
                    self.config["task"]["dataset"])(self.config["val_dataset"])
                self.val_sampler = DistributedSampler(
                    self.val_dataset,
                    num_replicas=distutils.get_world_size(),
                    rank=distutils.get_rank(),
                    shuffle=False,
                )
                self.val_loader = DataLoader(
                    self.val_dataset,
                    self.config["optim"].get("eval_batch_size", 64),
                    collate_fn=self.parallel_collater,
                    num_workers=self.config["optim"]["num_workers"],
                    pin_memory=True,
                    sampler=self.val_sampler,
                )
        else:
            raise NotImplementedError

        self.num_targets = 1

        # Normalizer for the dataset.
        # Compute mean, std of training set labels.
        self.normalizers = {}
        if self.config["dataset"].get("normalize_labels", True):
            if "target_mean" in self.config["dataset"]:
                self.normalizers["target"] = Normalizer(
                    mean=self.config["dataset"]["target_mean"],
                    std=self.config["dataset"]["target_std"],
                    device=self.device,
                )
            else:
                raise NotImplementedError
コード例 #2
0
ファイル: energy_trainer.py プロジェクト: wood-b/ocp
    def load_task(self):
        assert (self.config["task"]["dataset"] == "single_point_lmdb"
                ), "EnergyTrainer requires single_point_lmdb dataset"

        logging.info(f"Loading dataset: {self.config['task']['dataset']}")

        self.parallel_collater = ParallelCollater(
            0 if self.cpu else 1,
            self.config["model_attributes"].get("otf_graph", False),
        )

        self.val_loader = self.test_loader = self.train_loader = None
        self.val_sampler = self.test_sampler = self.train_sampler = None

        if self.config.get("dataset", None):
            self.train_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])
            self.train_sampler = self.get_sampler(
                self.train_dataset,
                self.config["optim"]["batch_size"],
                shuffle=True,
            )
            self.train_loader = self.get_dataloader(
                self.train_dataset,
                self.train_sampler,
            )

        if self.config.get("val_dataset", None):
            self.val_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["val_dataset"])
            self.val_sampler = self.get_sampler(
                self.val_dataset,
                self.config["optim"].get("eval_batch_size",
                                         self.config["optim"]["batch_size"]),
                shuffle=False,
            )
            self.val_loader = self.get_dataloader(
                self.val_dataset,
                self.val_sampler,
            )
        if self.config.get("test_dataset", None):
            self.test_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["test_dataset"])
            self.test_sampler = self.get_sampler(
                self.test_dataset,
                self.config["optim"].get("eval_batch_size",
                                         self.config["optim"]["batch_size"]),
                shuffle=False,
            )
            self.test_loader = self.get_dataloader(
                self.test_dataset,
                self.test_sampler,
            )

        self.num_targets = 1

        # Normalizer for the dataset.
        # Compute mean, std of training set labels.
        self.normalizers = {}
        if self.normalizer.get("normalize_labels", False):
            if "target_mean" in self.normalizer:
                self.normalizers["target"] = Normalizer(
                    mean=self.normalizer["target_mean"],
                    std=self.normalizer["target_std"],
                    device=self.device,
                )
            else:
                raise NotImplementedError
コード例 #3
0
ファイル: forces_trainer.py プロジェクト: Gth1205/baselines
    def load_task(self):
        print("### Loading dataset: {}".format(self.config["task"]["dataset"]))

        self.parallel_collater = ParallelCollater(self.config["optim"].get(
            "num_gpus", 1))
        if self.config["task"]["dataset"] == "trajectory_lmdb":
            self.train_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])

            self.train_loader = DataLoader(
                self.train_dataset,
                batch_size=self.config["optim"]["batch_size"],
                shuffle=True,
                collate_fn=self.parallel_collater,
                num_workers=self.config["optim"]["num_workers"],
            )

            self.val_loader = self.test_loader = None

            if "val_dataset" in self.config:
                self.val_dataset = registry.get_dataset_class(
                    self.config["task"]["dataset"])(self.config["val_dataset"])
                self.val_loader = DataLoader(
                    self.val_dataset,
                    self.config["optim"].get("eval_batch_size", 64),
                    shuffle=False,
                    collate_fn=self.parallel_collater,
                    num_workers=self.config["optim"]["num_workers"],
                )
        else:
            self.dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])
            (
                self.train_loader,
                self.val_loader,
                self.test_loader,
            ) = self.dataset.get_dataloaders(
                batch_size=self.config["optim"]["batch_size"],
                collate_fn=self.parallel_collater,
            )

        self.num_targets = 1

        # Normalizer for the dataset.
        # Compute mean, std of training set labels.
        self.normalizers = {}
        if self.config["dataset"].get("normalize_labels", True):
            if "target_mean" in self.config["dataset"]:
                self.normalizers["target"] = Normalizer(
                    mean=self.config["dataset"]["target_mean"],
                    std=self.config["dataset"]["target_std"],
                    device=self.device,
                )
            else:
                self.normalizers["target"] = Normalizer(
                    tensor=self.train_loader.dataset.data.y[
                        self.train_loader.dataset.__indices__],
                    device=self.device,
                )

        # If we're computing gradients wrt input, set mean of normalizer to 0 --
        # since it is lost when compute dy / dx -- and std to forward target std
        if "grad_input" in self.config["task"]:
            if self.config["dataset"].get("normalize_labels", True):
                if "target_mean" in self.config["dataset"]:
                    self.normalizers["grad_target"] = Normalizer(
                        mean=self.config["dataset"]["grad_target_mean"],
                        std=self.config["dataset"]["grad_target_std"],
                        device=self.device,
                    )
                else:
                    self.normalizers["grad_target"] = Normalizer(
                        tensor=self.train_loader.dataset.data.y[
                            self.train_loader.dataset.__indices__],
                        device=self.device,
                    )
                    self.normalizers["grad_target"].mean.fill_(0)

        if self.is_vis and self.config["task"]["dataset"] != "qm9":
            # Plot label distribution.
            plots = [
                plot_histogram(
                    self.train_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: train",
                ),
                plot_histogram(
                    self.val_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: val",
                ),
                plot_histogram(
                    self.test_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: test",
                ),
            ]
            self.logger.log_plots(plots)
コード例 #4
0
    def load_task(self):
        print("### Loading dataset: {}".format(self.config["task"]["dataset"]))

        self.parallel_collater = ParallelCollater(
            1 if not self.cpu else 0,
            self.config["model_attributes"].get("otf_graph", False),
        )
        if self.config["task"]["dataset"] == "trajectory_lmdb":
            self.train_dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])

            self.train_loader = DataLoader(
                self.train_dataset,
                batch_size=self.config["optim"]["batch_size"],
                shuffle=True,
                collate_fn=self.parallel_collater,
                num_workers=self.config["optim"]["num_workers"],
                pin_memory=True,
            )

            self.val_loader = self.test_loader = None

            if "val_dataset" in self.config:
                self.val_dataset = registry.get_dataset_class(
                    self.config["task"]["dataset"])(self.config["val_dataset"])
                self.val_loader = DataLoader(
                    self.val_dataset,
                    self.config["optim"].get("eval_batch_size", 64),
                    shuffle=False,
                    collate_fn=self.parallel_collater,
                    num_workers=self.config["optim"]["num_workers"],
                    pin_memory=True,
                )
            if "test_dataset" in self.config:
                self.test_dataset = registry.get_dataset_class(
                    self.config["task"]["dataset"])(
                        self.config["test_dataset"])
                self.test_loader = DataLoader(
                    self.test_dataset,
                    self.config["optim"].get("eval_batch_size", 64),
                    shuffle=False,
                    collate_fn=self.parallel_collater,
                    num_workers=self.config["optim"]["num_workers"],
                    pin_memory=True,
                )

            if "relax_dataset" in self.config["task"]:
                assert os.path.isfile(
                    self.config["task"]["relax_dataset"]["src"])

                self.relax_dataset = registry.get_dataset_class(
                    "single_point_lmdb")(self.config["task"]["relax_dataset"])

                self.relax_sampler = DistributedSampler(
                    self.relax_dataset,
                    num_replicas=distutils.get_world_size(),
                    rank=distutils.get_rank(),
                    shuffle=False,
                )
                self.relax_loader = DataLoader(
                    self.relax_dataset,
                    batch_size=self.config["optim"].get("eval_batch_size", 64),
                    collate_fn=self.parallel_collater,
                    num_workers=self.config["optim"]["num_workers"],
                    pin_memory=True,
                    sampler=self.relax_sampler,
                )

        else:
            self.dataset = registry.get_dataset_class(
                self.config["task"]["dataset"])(self.config["dataset"])
            (
                self.train_loader,
                self.val_loader,
                self.test_loader,
            ) = self.dataset.get_dataloaders(
                batch_size=self.config["optim"]["batch_size"],
                collate_fn=self.parallel_collater,
            )

        self.num_targets = 1

        # Normalizer for the dataset.
        # Compute mean, std of training set labels.
        self.normalizers = {}
        if self.config["dataset"].get("normalize_labels", False):
            if "target_mean" in self.config["dataset"]:
                self.normalizers["target"] = Normalizer(
                    mean=self.config["dataset"]["target_mean"],
                    std=self.config["dataset"]["target_std"],
                    device=self.device,
                )
            else:
                self.normalizers["target"] = Normalizer(
                    tensor=self.train_loader.dataset.data.y[
                        self.train_loader.dataset.__indices__],
                    device=self.device,
                )

        # If we're computing gradients wrt input, set mean of normalizer to 0 --
        # since it is lost when compute dy / dx -- and std to forward target std
        if self.config["model_attributes"].get("regress_forces", True):
            if self.config["dataset"].get("normalize_labels", False):
                if "grad_target_mean" in self.config["dataset"]:
                    self.normalizers["grad_target"] = Normalizer(
                        mean=self.config["dataset"]["grad_target_mean"],
                        std=self.config["dataset"]["grad_target_std"],
                        device=self.device,
                    )
                else:
                    self.normalizers["grad_target"] = Normalizer(
                        tensor=self.train_loader.dataset.data.y[
                            self.train_loader.dataset.__indices__],
                        device=self.device,
                    )
                    self.normalizers["grad_target"].mean.fill_(0)

        if (self.is_vis and self.config["task"]["dataset"] != "qm9"
                and distutils.is_master()):
            # Plot label distribution.
            plots = [
                plot_histogram(
                    self.train_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: train",
                ),
                plot_histogram(
                    self.val_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: val",
                ),
                plot_histogram(
                    self.test_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: test",
                ),
            ]
            self.logger.log_plots(plots)
コード例 #5
0
    def load_task(self):
        print("### Loading dataset: {}".format(self.config["task"]["dataset"]))
        dataset = registry.get_dataset_class(self.config["task"]["dataset"])(
            self.config["dataset"])

        if self.config["task"]["dataset"] in ["qm9", "dogss"]:
            num_targets = dataset.data.y.shape[-1]
            if ("label_index" in self.config["task"]
                    and self.config["task"]["label_index"] is not False):
                dataset.data.y = dataset.data.y[:,
                                                int(self.config["task"]
                                                    ["label_index"])]
                num_targets = 1
        else:
            num_targets = 1

        self.num_targets = num_targets
        (
            self.train_loader,
            self.val_loader,
            self.test_loader,
        ) = dataset.get_dataloaders(
            batch_size=int(self.config["optim"]["batch_size"]))

        # Normalizer for the dataset.
        # Compute mean, std of training set labels.
        self.normalizers = {}
        if self.config["dataset"].get("normalize_labels", True):
            self.normalizers["target"] = Normalizer(
                self.train_loader.dataset.data.y[
                    self.train_loader.dataset.__indices__],
                self.device,
            )

        # If we're computing gradients wrt input, set mean of normalizer to 0 --
        # since it is lost when compute dy / dx -- and std to forward target std
        if "grad_input" in self.config["task"]:
            if self.config["dataset"].get("normalize_labels", True):
                self.normalizers["grad_target"] = Normalizer(
                    self.train_loader.dataset.data.y[
                        self.train_loader.dataset.__indices__],
                    self.device,
                )
                self.normalizers["grad_target"].mean.fill_(0)

        if self.is_vis and self.config["task"]["dataset"] != "qm9":
            # Plot label distribution.
            plots = [
                plot_histogram(
                    self.train_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: train",
                ),
                plot_histogram(
                    self.val_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: val",
                ),
                plot_histogram(
                    self.test_loader.dataset.data.y.tolist(),
                    xlabel="{}/raw".format(self.config["task"]["labels"][0]),
                    ylabel="# Examples",
                    title="Split: test",
                ),
            ]
            self.logger.log_plots(plots)
コード例 #6
0
ファイル: cfgp_trainer.py プロジェクト: Gth1205/baselines
class CfgpTrainer:
    def __init__(self, conv_trainer, gpytorch_trainer):
        """
        The `conv_trainer` needs to be a `SimpleTrainer` whose model has the
        `_convolve` method. The `gpytorch_trainer` needs to be a
        `GPyTorchTrainer`.
        """
        self.conv_trainer = conv_trainer
        self.gpytorch_trainer = gpytorch_trainer

        self.device = self.conv_trainer.device
        self.train_loader = self.conv_trainer.train_loader
        self.val_loader = self.conv_trainer.val_loader
        self.test_loader = self.conv_trainer.test_loader

    def train(self, lr=0.1, n_training_iter=20):
        print("### Beginning training on convolutional network.")
        self.conv_trainer.train()
        self._train_gp(lr, n_training_iter)

    def _train_gp(self, lr, n_training_iter):
        print("### Beginning training on GP.")
        convolutions, train_y = self._get_training_convolutions()
        self.gpytorch_trainer.train(
            train_x=convolutions,
            train_y=train_y,
            lr=lr,
            n_training_iter=n_training_iter,
        )

    def _get_training_convolutions(self):
        train_convs, train_y = self._get_convolutions(self.train_loader)

        self.conv_normalizer = Normalizer(train_convs, self.device)
        normed_convs = self.conv_normalizer.norm(train_convs)
        return normed_convs, train_y

    def _get_convolutions(self, data_loader):
        self.conv_trainer.model.eval()
        convolutions = []
        targets = []

        for i, batch in enumerate(data_loader):
            batch.to(self.device)
            out = self.conv_trainer.model._convolve(batch)
            for conv, target in zip(out.tolist(), batch.y):
                convolutions.append(conv)
                targets.append(target)

        convolutions = torch.Tensor(convolutions).to(self.device)
        targets = torch.Tensor(targets).to(self.device)
        return convolutions, targets

    def predict(self, src, batch_size=32):
        print("### Generating predictions on {}.".format(src))

        # Parse the data
        dataset_config = {"src": src}
        dataset = registry.get_dataset_class(
            self.conv_trainer.config["task"]["dataset"])(dataset_config)
        data_loader = dataset.get_full_dataloader(batch_size=batch_size)

        # Get the convolutions
        convs, targets_actual = self._get_convolutions(data_loader)
        try:
            normed_convs = self.conv_normalizer.norm(convs)
        except AttributeError as error:
            raise type(error)(str(error) + "; error may have occurred "
                              "because the CFGP may not have been trained yet")

        # Feed the convolutions into the GP
        targets_pred, targets_std = self.gpytorch_trainer.predict(normed_convs)
        return targets_pred, targets_std

    def save_state(self,
                   gp_path='gp_state.pth',
                   normalizer_path='normalizer.pth'):
        self.gpytorch_trainer.save_state(gp_path)
        with open(normalizer_path, 'wb') as f:
            pickle.dump(self.conv_normalizer.state_dict(), f)

    def load_state(self, nn_checkpoint_file, gp_checkpoint_file,
                   normalizer_checkpoint_file):
        self._load_conv(nn_checkpoint_file)
        self._load_gp(gp_checkpoint_file)
        self._load_normalizer(normalizer_checkpoint_file)

    def _load_conv(self, nn_checkpoint_file):
        self.conv_trainer.load_state(nn_checkpoint_file)

    def _load_gp(self, gp_checkpoint_file):
        convolutions, train_y = self._get_training_convolutions()
        self.gpytorch_trainer.load_state(gp_checkpoint_file, convolutions,
                                         train_y)

    def _load_normalizer(self, normalizer_checkpoint_file):
        with open(normalizer_checkpoint_file, 'rb') as f:
            normalizer_state_dict = pickle.load(f)
        self.conv_normalizer.load_state_dict(normalizer_state_dict)
コード例 #7
0
ファイル: cfgp_trainer.py プロジェクト: Gth1205/baselines
    def _get_training_convolutions(self):
        train_convs, train_y = self._get_convolutions(self.train_loader)

        self.conv_normalizer = Normalizer(train_convs, self.device)
        normed_convs = self.conv_normalizer.norm(train_convs)
        return normed_convs, train_y