コード例 #1
0
 def sanitize_page(self, page, page_id):
     regions = page.get_TextRegion()
     page_image, page_coords, _ = self.workspace.image_from_page(
         page, page_id)
     for region in regions:
         LOG.info('Sanitizing region "%s"', region.id)
         lines = region.get_TextLine()
         heights = []
         # get labels:
         region_mask = np.zeros((page_image.height, page_image.width), dtype=np.uint8)
         for line in lines:
             line_polygon = coordinates_of_segment(line, page_image, page_coords)
             heights.append(xywh_from_polygon(line_polygon)['h'])
             region_mask[draw.polygon(line_polygon[:, 1],
                                      line_polygon[:, 0],
                                      region_mask.shape)] = 1
             region_mask[draw.polygon_perimeter(line_polygon[:, 1],
                                                line_polygon[:, 0],
                                                region_mask.shape)] = 1
         # estimate scale:
         scale = int(np.median(np.array(heights)))
         # close labels:
         region_mask = np.pad(region_mask, scale) # protect edges
         region_mask = filters.maximum_filter(region_mask, (scale, 1), origin=0)
         region_mask = filters.minimum_filter(region_mask, (scale, 1), origin=0)
         region_mask = region_mask[scale:-scale, scale:-scale] # unprotect
         # find outer contour (parts):
         contours, _ = cv2.findContours(region_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
         # determine areas of parts:
         areas = [cv2.contourArea(contour) for contour in contours]
         total_area = sum(areas)
         if not total_area:
             # ignore if too small
             LOG.warning('Zero contour area in region "%s"', region.id)
             continue
         # pick contour and convert to absolute:
         region_polygon = None
         for i, contour in enumerate(contours):
             area = areas[i]
             if area / total_area < 0.1:
                 LOG.warning('Ignoring contour %d too small (%d/%d) in region "%s"',
                             i, area, total_area, region.id)
                 continue
             # simplify shape:
             polygon = cv2.approxPolyDP(contour, 2, False)[:, 0, ::] # already ordered x,y
             if len(polygon) < 4:
                 LOG.warning('Ignoring contour %d less than 4 points in region "%s"',
                             i, region.id)
                 continue
             if region_polygon is not None:
                 LOG.error('Skipping region "%s" due to non-contiguous contours',
                           region.id)
                 region_polygon = None
                 break
             region_polygon = coordinates_for_segment(polygon, page_image, page_coords)
         if region_polygon is not None:
             LOG.info('Using new coordinates for region "%s"', region.id)
             region.get_Coords().points = points_from_polygon(region_polygon)
コード例 #2
0
    def _set_Border(self, page, page_image, page_xywh, border_polygon):
        # Convert to absolute (page) coordinates:
        border_polygon = coordinates_for_segment(border_polygon, page_image,
                                                 page_xywh)

        # Save border:
        page.set_Border(
            BorderType(Coords=CoordsType(
                points=points_from_polygon(border_polygon))))
コード例 #3
0
    def _process_segment(self, page_image, page, page_xywh, page_id, input_file, n):
        img_array = ocrolib.pil2array(page_image)

        # Check if image is RGB or not #FIXME: check not needed anymore?
        if len(img_array.shape) == 2:
            img_array = np.stack((img_array,)*3, axis=-1)

        img_array_bin = np.array(
            img_array > ocrolib.midrange(img_array), 'i')

        lineDetectH = []
        lineDetectV = []
        img_array_rr = self.remove_rular(img_array)

        textarea, img_array_rr_ta, height, width = self.detect_textarea(
            img_array_rr)
        colSeparator = int(
            width * self.parameter['colSeparator'])
        if len(textarea) > 1:
            textarea = self.crop_area(
                textarea, img_array_bin, img_array_rr_ta, colSeparator)

            if len(textarea) == 0:
                min_x, min_y, max_x, max_y = self.select_borderLine(
                    img_array_rr, lineDetectH, lineDetectV)
            else:
                min_x, min_y, max_x, max_y = textarea[0]
        elif len(textarea) == 1 and (height*width*0.5 < (abs(textarea[0][2]-textarea[0][0]) * abs(textarea[0][3]-textarea[0][1]))):
            x1, y1, x2, y2 = textarea[0]
            x1 = x1-20 if x1 > 20 else 0
            x2 = x2+20 if x2 < width-20 else width
            y1 = y1-40 if y1 > 40 else 0
            y2 = y2+40 if y2 < height-40 else height

            min_x, min_y, max_x, max_y = textarea[0]
        else:
            min_x, min_y, max_x, max_y = self.select_borderLine(
                img_array_rr, lineDetectH, lineDetectV)

        border_polygon = [[min_x, min_y], [max_x, min_y], [max_x, max_y], [min_x, max_y]]
        border_polygon = coordinates_for_segment(border_polygon, page_image, page_xywh)
        border_points = points_from_polygon(border_polygon)
        brd = BorderType(Coords=CoordsType(border_points))
        page.set_Border(brd)

        page_image = crop_image(page_image, box=(min_x, min_y, max_x, max_y))
        page_xywh['features'] += ',cropped'

        file_id = make_file_id(input_file, self.output_file_grp)

        file_path = self.workspace.save_image_file(page_image,
                                                   file_id + '-IMG',
                                                   page_id=page_id,
                                                   file_grp=self.output_file_grp)
        page.add_AlternativeImage(AlternativeImageType(
            filename=file_path, comments=page_xywh['features']))
コード例 #4
0
 def _process_region(self, it, region, rogroup, region_image,
                     region_coords):
     LOG = getLogger('processor.TesserocrSegmentTable')
     # equivalent to GetComponentImages with raw_image=True,
     # (which would also give raw coordinates),
     # except we are also interested in the iterator's BlockType() here,
     index = 0
     if rogroup:
         for elem in (rogroup.get_RegionRefIndexed() +
                      rogroup.get_OrderedGroupIndexed() +
                      rogroup.get_UnorderedGroupIndexed()):
             if elem.index >= index:
                 index = elem.index + 1
     while it and not it.Empty(RIL.BLOCK):
         bbox = it.BoundingBox(RIL.BLOCK)
         polygon = polygon_from_x0y0x1y1(bbox)
         polygon = coordinates_for_segment(polygon, region_image,
                                           region_coords)
         points = points_from_polygon(polygon)
         coords = CoordsType(points=points)
         # if xywh['w'] < 30 or xywh['h'] < 30:
         #     LOG.info('Ignoring too small region: %s', points)
         #     it.Next(RIL.BLOCK)
         #     continue
         #
         # add the region reference in the reading order element
         # (but ignore non-text regions entirely)
         ID = region.id + "_%04d" % index
         subregion = TextRegionType(id=ID,
                                    Coords=coords,
                                    type=TextTypeSimpleType.PARAGRAPH)
         block_type = it.BlockType()
         if block_type == PT.FLOWING_TEXT:
             pass
         elif block_type == PT.HEADING_TEXT:
             subregion.set_type(TextTypeSimpleType.HEADING)
         elif block_type == PT.PULLOUT_TEXT:
             subregion.set_type(TextTypeSimpleType.FLOATING)
         elif block_type == PT.CAPTION_TEXT:
             subregion.set_type(TextTypeSimpleType.CAPTION)
         elif block_type == PT.VERTICAL_TEXT:
             subregion.set_orientation(90.0)
         else:
             it.Next(RIL.BLOCK)
             continue
         LOG.info("Detected cell '%s': %s (%s)", ID, points,
                  membername(PT, block_type))
         region.add_TextRegion(subregion)
         if rogroup:
             rogroup.add_RegionRefIndexed(
                 RegionRefIndexedType(regionRef=ID, index=index))
         #
         # iterator increment
         #
         index += 1
         it.Next(RIL.BLOCK)
コード例 #5
0
    def _add_TextRegion(self, page, page_image, page_xywh, page_id,
                        region_polygon, region_id):
        # Convert to absolute (page) coordinates:
        region_polygon = coordinates_for_segment(region_polygon, page_image,
                                                 page_xywh)

        # Save text region:
        page.add_TextRegion(
            TextRegionType(
                id=page_id + region_id,
                Coords=CoordsType(points=points_from_polygon(region_polygon))))
コード例 #6
0
 def _process_words_in_line(self, result_it, line, line_xywh):
     LOG = getLogger('processor.TesserocrRecognize')
     if not result_it or result_it.Empty(RIL.WORD):
         LOG.warning("No text in line '%s'", line.id)
         return
     # iterate until IsAtFinalElement(RIL.LINE, RIL.WORD):
     word_no = 0
     while result_it and not result_it.Empty(RIL.WORD):
         word_id = '%s_word%04d' % (line.id, word_no)
         LOG.debug("Decoding text in word '%s'", word_id)
         bbox = result_it.BoundingBox(RIL.WORD)
         # convert to absolute coordinates:
         polygon = coordinates_for_segment(polygon_from_x0y0x1y1(bbox),
                                           None, line_xywh) - self.parameter['padding']
         polygon2 = polygon_for_parent(polygon, line)
         if polygon2 is not None:
             polygon = polygon2
         points = points_from_polygon(polygon)
         word = WordType(id=word_id, Coords=CoordsType(points))
         if polygon2 is None:
             # could happen due to rotation
             LOG.info('Ignoring extant word: %s', points)
         else:
             line.add_Word(word)
         # todo: determine if font attributes available for word level will work with LSTM models
         word_attributes = result_it.WordFontAttributes()
         if word_attributes:
             word_style = TextStyleType(
                 fontSize=word_attributes['pointsize']
                 if 'pointsize' in word_attributes else None,
                 fontFamily=word_attributes['font_name']
                 if 'font_name' in word_attributes else None,
                 bold=word_attributes['bold']
                 if 'bold' in word_attributes else None,
                 italic=word_attributes['italic']
                 if 'italic' in word_attributes else None,
                 underlined=word_attributes['underlined']
                 if 'underlined' in word_attributes else None,
                 monospace=word_attributes['monospace']
                 if 'monospace' in word_attributes else None,
                 serif=word_attributes['serif']
                 if 'serif' in word_attributes else None)
             word.set_TextStyle(word_style) # (or somewhere in custom attribute?)
         # add word annotation unconditionally (i.e. even for glyph level):
         word.add_TextEquiv(TextEquivType(
             Unicode=result_it.GetUTF8Text(RIL.WORD),
             conf=result_it.Confidence(RIL.WORD)/100))
         if self.parameter['textequiv_level'] != 'word':
             self._process_glyphs_in_word(result_it, word, line_xywh)
         if result_it.IsAtFinalElement(RIL.TEXTLINE, RIL.WORD):
             break
         else:
             word_no += 1
             result_it.Next(RIL.WORD)
コード例 #7
0
    def _add_TextLine(self, page_id, region, region_image, region_xywh,
                      region_id, line_polygon, line_id):
        # Convert to absolute (page) coordinates:
        line_polygon = coordinates_for_segment(line_polygon, region_image,
                                               region_xywh)

        # Save text line:
        region.add_TextLine(
            TextLineType(
                id=page_id + region_id + line_id,
                Coords=CoordsType(points=points_from_polygon(line_polygon))))
コード例 #8
0
def adapt_coords(segment, parent, transform):
    points = segment.get_Coords().get_points()
    polygon = polygon_from_points(points)
    # polygon absolute coords (after transforming back from page coords, e.g. deskewing)
    polygon_new = coordinates_for_segment(polygon, None, transform)
    # intersection with parent polygon
    polygon_new = polygon_for_parent(polygon_new, parent)
    if polygon_new is None:
        return None
    points_new = points_from_polygon(polygon_new)
    segment.set_Coords(CoordsType(points=points_new))
    return segment
コード例 #9
0
ファイル: repair.py プロジェクト: bertsky/ocrd_segment
def ensure_consistent(child):
    """Clip segment element polygon to parent polygon range."""
    points = child.get_Coords().points
    polygon = polygon_from_points(points)
    parent = child.parent_object_
    childp = Polygon(polygon)
    if isinstance(parent, PageType):
        if parent.get_Border():
            parentp = Polygon(
                polygon_from_points(parent.get_Border().get_Coords().points))
        else:
            parentp = Polygon(
                [[0, 0], [0, parent.get_imageHeight()],
                 [parent.get_imageWidth(),
                  parent.get_imageHeight()], [parent.get_imageWidth(), 0]])
    else:
        parentp = Polygon(polygon_from_points(parent.get_Coords().points))
    # ensure input coords have valid paths (without self-intersection)
    # (this can happen when shapes valid in floating point are rounded)
    childp = make_valid(childp)
    parentp = make_valid(parentp)
    # check if clipping is necessary
    if childp.within(parentp):
        return
    # clip to parent
    interp = childp.intersection(parentp)
    if interp.is_empty or interp.area == 0.0:
        if hasattr(parent, 'pcGtsId'):
            parent_id = parent.pcGtsId
        elif hasattr(parent, 'imageFilename'):
            parent_id = parent.imageFilename
        else:
            parent_id = parent.id
        raise Exception("Segment '%s' does not intersect its parent '%s'" %
                        (child.id, parent_id))
    if interp.type == 'GeometryCollection':
        # heterogeneous result: filter zero-area shapes (LineString, Point)
        interp = unary_union([geom for geom in interp.geoms if geom.area > 0])
    if interp.type == 'MultiPolygon':
        # homogeneous result: construct convex hull to connect
        # FIXME: construct concave hull / alpha shape
        interp = interp.convex_hull
    if interp.minimum_clearance < 1.0:
        # follow-up calculations will necessarily be integer;
        # so anticipate rounding here and then ensure validity
        interp = asPolygon(np.round(interp.exterior.coords))
        interp = make_valid(interp)
    polygon = interp.exterior.coords[:-1]  # keep open
    points = points_from_polygon(polygon)
    child.get_Coords().set_points(points)
        def add_region(region: RectSegment, index: int, region_type: str):
            from ocrd_utils import coordinates_for_segment, points_from_polygon
            polygon = polygon_from_segment(region)
            polygon = coordinates_for_segment(polygon, page_image, page_coords)
            points = points_from_polygon(polygon)

            indexed_id = "region%04d" % index
            coords = CoordsType(points=points)
            if region_type == "text":
                page.add_TextRegion(
                    TextRegionType(id=indexed_id, Coords=coords))
            elif region_type == "image":
                page.add_ImageRegion(
                    ImageRegionType(id=indexed_id, Coords=coords))
            else:
                page.add_NoiseRegion(
                    NoiseRegionType(id=indexed_id, Coords=coords))
コード例 #11
0
 def _process_glyphs_in_word(self, result_it, word, word_xywh):
     LOG = getLogger('processor.TesserocrRecognize')
     if not result_it or result_it.Empty(RIL.SYMBOL):
         LOG.debug("No glyph in word '%s'", word.id)
         return
     # iterate until IsAtFinalElement(RIL.WORD, RIL.SYMBOL):
     glyph_no = 0
     while result_it and not result_it.Empty(RIL.SYMBOL):
         glyph_id = '%s_glyph%04d' % (word.id, glyph_no)
         LOG.debug("Decoding text in glyph '%s'", glyph_id)
         #  glyph_text = result_it.GetUTF8Text(RIL.SYMBOL) # equals first choice?
         glyph_conf = result_it.Confidence(RIL.SYMBOL)/100 # equals first choice?
         #LOG.debug('best glyph: "%s" [%f]', glyph_text, glyph_conf)
         bbox = result_it.BoundingBox(RIL.SYMBOL)
         # convert to absolute coordinates:
         polygon = coordinates_for_segment(polygon_from_x0y0x1y1(bbox),
                                           None, word_xywh) - self.parameter['padding']
         polygon2 = polygon_for_parent(polygon, word)
         if polygon2 is not None:
             polygon = polygon2
         points = points_from_polygon(polygon)
         glyph = GlyphType(id=glyph_id, Coords=CoordsType(points))
         if polygon2 is None:
             # could happen due to rotation
             LOG.info('Ignoring extant glyph: %s', points)
         else:
             word.add_Glyph(glyph)
         choice_it = result_it.GetChoiceIterator()
         for (choice_no, choice) in enumerate(choice_it):
             alternative_text = choice.GetUTF8Text()
             alternative_conf = choice.Confidence()/100
             #LOG.debug('alternative glyph: "%s" [%f]', alternative_text, alternative_conf)
             if (glyph_conf - alternative_conf > CHOICE_THRESHOLD_CONF or
                 choice_no > CHOICE_THRESHOLD_NUM):
                 break
             # todo: consider SymbolIsSuperscript (TextStyle), SymbolIsDropcap (RelationType) etc
             glyph.add_TextEquiv(TextEquivType(index=choice_no, Unicode=alternative_text, conf=alternative_conf))
         if result_it.IsAtFinalElement(RIL.WORD, RIL.SYMBOL):
             break
         else:
             glyph_no += 1
             result_it.Next(RIL.SYMBOL)
コード例 #12
0
ファイル: repair.py プロジェクト: bertsky/ocrd_segment
def ensure_valid(element):
    changed = False
    coords = element.get_Coords()
    points = coords.points
    polygon = polygon_from_points(points)
    array = np.array(polygon, np.int)
    if array.min() < 0:
        array = np.maximum(0, array)
        changed = True
    if array.shape[0] < 3:
        array = np.concatenate([array, array[::-1] + 1])
        changed = True
    polygon = array.tolist()
    poly = Polygon(polygon)
    if not poly.is_valid:
        poly = make_valid(poly)
        polygon = poly.exterior.coords[:-1]
        changed = True
    if changed:
        points = points_from_polygon(polygon)
        coords.set_points(points)
コード例 #13
0
 def process_page(self, page, page_image, page_xywh, bounds, file_id, page_id):
     """Set the identified page border, if valid."""
     LOG = getLogger('processor.TesserocrCrop')
     left, top, right, bottom = bounds
     if left >= right or top >= bottom:
         LOG.error("Cannot find valid extent for page '%s'", page_id)
         return
     padding = self.parameter['padding']
     # add padding:
     left = max(left - padding, 0)
     right = min(right + padding, page_image.width)
     top = max(top - padding, 0)
     bottom = min(bottom + padding, page_image.height)
     LOG.info("Padded page border: %i:%i,%i:%i", left, right, top, bottom)
     polygon = polygon_from_bbox(left, top, right, bottom)
     polygon = coordinates_for_segment(polygon, page_image, page_xywh)
     polygon = polygon_for_parent(polygon, page)
     if polygon is None:
         LOG.error("Ignoring extant border")
         return
     border = BorderType(Coords=CoordsType(
         points_from_polygon(polygon)))
     # intersection with parent could have changed bbox,
     # so recalculate:
     bbox = bbox_from_polygon(coordinates_of_segment(border, page_image, page_xywh))
     # update PAGE (annotate border):
     page.set_Border(border)
     # update METS (add the image file):
     page_image = crop_image(page_image, box=bbox)
     page_xywh['features'] += ',cropped'
     file_path = self.workspace.save_image_file(
         page_image, file_id + '.IMG-CROP',
         page_id=page_id, file_grp=self.output_file_grp)
     # update PAGE (reference the image file):
     page.add_AlternativeImage(AlternativeImageType(
         filename=file_path, comments=page_xywh['features']))
コード例 #14
0
def convert(cocofile, directory):
    """Convert MS-COCO JSON to METS/PAGE XML files.
    
    Load JSON ``cocofile`` (in MS-COCO format)
    and chdir to ``directory`` (which it refers to).
    
    Start a METS file mets.xml with references to
    the image files (under fileGrp ``OCR-D-IMG``)
    and their corresponding PAGE-XML annotations
    (under fileGrp ``OCR-D-GT-SEG-BLOCK``), as
    parsed from ``cocofile`` and written using
    the same basename.
    """
    resolver = Resolver()
    with pushd_popd(directory):
        workspace = resolver.workspace_from_nothing('.')
        # https://github.com/ibm-aur-nlp/PubLayNet
        workspace.mets.unique_identifier = 'ocrd_PubLayNet_' + directory
        coco = json.load(cocofile)
        LOG.info('Loaded JSON for %d images with %d regions in %d categories',
                 len(coco['images']), len(coco['annotations']),
                 len(coco['categories']))
        categories = dict()
        for cat in coco['categories']:
            categories[cat['id']] = cat['name']
        images = dict()
        for image in coco['images']:
            images[image['id']] = image
        for annotation in coco['annotations']:
            image = images[annotation['image_id']]
            regions = image.setdefault('regions', list())
            regions.append(annotation)
        del coco
        LOG.info('Parsing annotations into PAGE-XML')
        for image in images.values():
            page_id = 'p' + str(image['id'])
            file_base, file_ext = os.path.splitext(image['file_name'])
            filename = file_base + '.xml'
            image_file = workspace.add_file('OCR-D-IMG',
                                            ID='OCR-D-IMG_' + page_id,
                                            pageId=page_id,
                                            mimetype=EXT_TO_MIME[file_ext],
                                            local_filename=image['file_name'])
            LOG.info('Added page %s file %s of type %s', image_file.pageId,
                     image_file.local_filename, image_file.mimetype)
            pcgts = page_from_image(image_file)
            pcgts.set_pcGtsId(page_id)
            page = pcgts.get_Page()
            assert page.imageWidth == image['width']
            assert page.imageHeight == image['height']
            for region in image['regions']:
                polygon = np.array(region['segmentation'])
                polygon = np.reshape(polygon, (polygon.shape[1] // 2, 2))
                coords = CoordsType(points=points_from_polygon(polygon))
                category = categories[region['category_id']]
                region_id = 'r' + str(region['id'])
                if category == 'text':
                    region_obj = TextRegionType(
                        id=region_id,
                        Coords=coords,
                        type_=TextTypeSimpleType.PARAGRAPH)
                    page.add_TextRegion(region_obj)
                elif category == 'title':
                    region_obj = TextRegionType(
                        id=region_id,
                        Coords=coords,
                        type_=TextTypeSimpleType.HEADING)  # CAPTION?
                    page.add_TextRegion(region_obj)
                elif category == 'list':
                    region_obj = TextRegionType(
                        id=region_id,
                        Coords=coords,
                        type_=TextTypeSimpleType.LISTLABEL)  # OTHER?
                    page.add_TextRegion(region_obj)
                elif category == 'table':
                    region_obj = TableRegionType(id=region_id, Coords=coords)
                    page.add_TableRegion(region_obj)
                elif category == 'figure':
                    region_obj = ImageRegionType(id=region_id, Coords=coords)
                    page.add_ImageRegion(region_obj)
                else:
                    raise Exception('unknown image category: %s' % category)
            page_file = workspace.add_file('OCR-D-GT-SEG-BLOCK',
                                           ID='OCR-D-GT-SEG-BLOCK_' + page_id,
                                           pageId=page_id,
                                           mimetype=MIMETYPE_PAGE,
                                           local_filename=filename,
                                           content=to_xml(pcgts))
            LOG.info('Added page %s file %s with %d regions', page_file.pageId,
                     page_file.local_filename, len(image['regions']))
        LOG.info('All done')
        workspace.save_mets()
コード例 #15
0
ファイル: recognize.py プロジェクト: OCR-D/ocrd_calamari
    def process(self):
        """
        Perform text recognition with Calamari on the workspace.

        If ``texequiv_level`` is ``word`` or ``glyph``, then additionally create word / glyph level segments by
        splitting at white space characters / glyph boundaries. In the case of ``glyph``, add all alternative character
        hypotheses down to ``glyph_conf_cutoff`` confidence threshold.
        """
        log = getLogger('processor.CalamariRecognize')

        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))

            page = pcgts.get_Page()
            page_image, page_coords, page_image_info = self.workspace.image_from_page(
                page, page_id, feature_selector=self.features)

            for region in page.get_AllRegions(classes=['Text']):
                region_image, region_coords = self.workspace.image_from_segment(
                    region,
                    page_image,
                    page_coords,
                    feature_selector=self.features)

                textlines = region.get_TextLine()
                log.info("About to recognize %i lines of region '%s'",
                         len(textlines), region.id)
                line_images_np = []
                line_coordss = []
                for line in textlines:
                    log.debug("Recognizing line '%s' in region '%s'", line.id,
                              region.id)

                    line_image, line_coords = self.workspace.image_from_segment(
                        line,
                        region_image,
                        region_coords,
                        feature_selector=self.features)
                    if ('binarized' not in line_coords['features']
                            and 'grayscale_normalized'
                            not in line_coords['features']
                            and self.network_input_channels == 1):
                        # We cannot use a feature selector for this since we don't
                        # know whether the model expects (has been trained on)
                        # binarized or grayscale images; but raw images are likely
                        # always inadequate:
                        log.warning(
                            "Using raw image for line '%s' in region '%s'",
                            line.id, region.id)

                    line_image = line_image if all(line_image.size) else [[0]]
                    line_image_np = np.array(line_image, dtype=np.uint8)
                    line_images_np.append(line_image_np)
                    line_coordss.append(line_coords)
                raw_results_all = self.predictor.predict_raw(
                    line_images_np, progress_bar=False)

                for line, line_coords, raw_results in zip(
                        textlines, line_coordss, raw_results_all):

                    for i, p in enumerate(raw_results):
                        p.prediction.id = "fold_{}".format(i)

                    prediction = self.voter.vote_prediction_result(raw_results)
                    prediction.id = "voted"

                    # Build line text on our own
                    #
                    # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same
                    # on prediction.positions. Do it on our own to have consistency.
                    #
                    # XXX Check Calamari's built-in post-processing on prediction.sentence

                    def _sort_chars(p):
                        """Filter and sort chars of prediction p"""
                        chars = p.chars
                        chars = [
                            c for c in chars if c.char
                        ]  # XXX Note that omission probabilities are not normalized?!
                        chars = [
                            c for c in chars if c.probability >=
                            self.parameter['glyph_conf_cutoff']
                        ]
                        chars = sorted(chars,
                                       key=lambda k: k.probability,
                                       reverse=True)
                        return chars

                    def _drop_leading_spaces(positions):
                        return list(
                            itertools.dropwhile(
                                lambda p: _sort_chars(p)[0].char == " ",
                                positions))

                    def _drop_trailing_spaces(positions):
                        return list(
                            reversed(_drop_leading_spaces(
                                reversed(positions))))

                    def _drop_double_spaces(positions):
                        def _drop_double_spaces_generator(positions):
                            last_was_space = False
                            for p in positions:
                                if p.chars[0].char == " ":
                                    if not last_was_space:
                                        yield p
                                    last_was_space = True
                                else:
                                    yield p
                                    last_was_space = False

                        return list(_drop_double_spaces_generator(positions))

                    positions = prediction.positions
                    positions = _drop_leading_spaces(positions)
                    positions = _drop_trailing_spaces(positions)
                    positions = _drop_double_spaces(positions)
                    positions = list(positions)

                    line_text = ''.join(
                        _sort_chars(p)[0].char for p in positions)
                    if line_text != prediction.sentence:
                        log.warning(
                            "Our own line text is not the same as Calamari's: '%s' != '%s'",
                            line_text, prediction.sentence)

                    # Delete existing results
                    if line.get_TextEquiv():
                        log.warning("Line '%s' already contained text results",
                                    line.id)
                    line.set_TextEquiv([])
                    if line.get_Word():
                        log.warning(
                            "Line '%s' already contained word segmentation",
                            line.id)
                    line.set_Word([])

                    # Save line results
                    line_conf = prediction.avg_char_probability
                    line.set_TextEquiv(
                        [TextEquivType(Unicode=line_text, conf=line_conf)])

                    # Save word results
                    #
                    # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation
                    # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict
                    # hierarchy of lines > words > glyphs.

                    def _words(s):
                        """Split words based on spaces and include spaces as 'words'"""
                        spaces = None
                        word = ''
                        for c in s:
                            if c == ' ' and spaces is True:
                                word += c
                            elif c != ' ' and spaces is False:
                                word += c
                            else:
                                if word:
                                    yield word
                                word = c
                                spaces = (c == ' ')
                        yield word

                    if self.parameter['textequiv_level'] in ['word', 'glyph']:
                        word_no = 0
                        i = 0

                        for word_text in _words(line_text):
                            word_length = len(word_text)
                            if not all(c == ' ' for c in word_text):
                                word_positions = positions[i:i + word_length]
                                word_start = word_positions[0].global_start
                                word_end = word_positions[-1].global_end

                                polygon = polygon_from_x0y0x1y1([
                                    word_start, 0, word_end, line_image.height
                                ])
                                points = points_from_polygon(
                                    coordinates_for_segment(
                                        polygon, None, line_coords))
                                # XXX Crop to line polygon?

                                word = WordType(id='%s_word%04d' %
                                                (line.id, word_no),
                                                Coords=CoordsType(points))
                                word.add_TextEquiv(
                                    TextEquivType(Unicode=word_text))

                                if self.parameter[
                                        'textequiv_level'] == 'glyph':
                                    for glyph_no, p in enumerate(
                                            word_positions):
                                        glyph_start = p.global_start
                                        glyph_end = p.global_end

                                        polygon = polygon_from_x0y0x1y1([
                                            glyph_start, 0, glyph_end,
                                            line_image.height
                                        ])
                                        points = points_from_polygon(
                                            coordinates_for_segment(
                                                polygon, None, line_coords))

                                        glyph = GlyphType(
                                            id='%s_glyph%04d' %
                                            (word.id, glyph_no),
                                            Coords=CoordsType(points))

                                        # Add predictions (= TextEquivs)
                                        char_index_start = 1  # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs
                                        for char_index, char in enumerate(
                                                _sort_chars(p),
                                                start=char_index_start):
                                            glyph.add_TextEquiv(
                                                TextEquivType(
                                                    Unicode=char.char,
                                                    index=char_index,
                                                    conf=char.probability))

                                        word.add_Glyph(glyph)

                                line.add_Word(word)
                                word_no += 1

                            i += word_length

            _page_update_higher_textequiv_levels('line', pcgts)

            # Add metadata about this operation and its runtime parameters:
            self.add_metadata(pcgts)
            file_id = make_file_id(input_file, self.output_file_grp)
            pcgts.set_pcGtsId(file_id)
            self.workspace.add_file(ID=file_id,
                                    file_grp=self.output_file_grp,
                                    pageId=input_file.pageId,
                                    mimetype=MIMETYPE_PAGE,
                                    local_filename=os.path.join(
                                        self.output_file_grp,
                                        file_id + '.xml'),
                                    content=to_xml(pcgts))
コード例 #16
0
ファイル: test_utils.py プロジェクト: b2m/core
 def test_points_from_polygon(self):
     self.assertEqual(
         points_from_polygon([[100, 100], [200, 100], [200, 200],
                              [100, 200]]),
         '100,100 200,100 200,200 100,200')
コード例 #17
0
    def _process_page(self, page, page_image, page_xywh, input_file, zoom=1.0):
        padding = self.parameter['padding']
        img_array = pil2array(page_image)
        # ensure RGB image
        if len(img_array.shape) == 2:
            img_array = np.stack((img_array, ) * 3, axis=-1)
        height, width, _ = img_array.shape
        size = height * width
        # zoom to 300 DPI (larger density: faster; most fixed parameters here expect 300)
        if zoom != 1.0:
            self.logger.info("scaling %dx%d image by %.2f", width, height,
                             zoom)
            img_array = cv2.resize(img_array,
                                   None,
                                   fx=zoom,
                                   fy=zoom,
                                   interpolation=cv2.INTER_CUBIC)

        # detect rule placed in image next to page for scale reference:
        mask_array, mask_box = self.detect_ruler(img_array)
        # detect page frame via line segment detector:
        border_polygon, prefer_border = self.select_borderLine(
            img_array, mask_box)
        border_polygon = np.array(border_polygon) / zoom  # unzoom
        # pad inwards:
        border_polygon = Polygon(border_polygon).buffer(
            -padding).exterior.coords[:-1]
        # get the bounding box from the border polygon:
        # min_x, min_y = border_polygon.min(axis=0)
        # max_x, max_y = border_polygon.max(axis=0)
        # get the inner rectangle from the border polygon:
        # _, min_x, max_x, _ = np.sort(border_polygon[:,0])
        # _, min_y, max_y, _ = np.sort(border_polygon[:,1])
        if prefer_border:
            self.logger.info("Preferring line detector")
        else:
            self.logger.info("Falling back to text detector")
            textboxes = self.detect_textboxes(img_array, mask_array)
            if len(textboxes) > 1:
                textboxes = self.merge_boxes(textboxes, img_array)
            textboxes = np.array(textboxes) / zoom  # unzoom

            if (len(textboxes) == 1 and self.parameter['columnAreaMin'] * size
                    < self.get_area(textboxes[0])):
                self.logger.info("Using text area (%d%% area)",
                                 100 * self.get_area(textboxes[0]) / size)
                min_x, min_y, max_x, max_y = textboxes[0]
                # pad outwards
                border_polygon = polygon_from_bbox(min_x - padding,
                                                   min_y - padding,
                                                   max_x + padding,
                                                   max_y + padding)

        def clip(point):
            x, y = point
            x = max(0, min(page_image.width, x))
            y = max(0, min(page_image.height, y))
            return x, y

        border_polygon = coordinates_for_segment(border_polygon, page_image,
                                                 page_xywh)
        border_polygon = list(map(clip, border_polygon))
        border_points = points_from_polygon(border_polygon)
        border = BorderType(Coords=CoordsType(border_points))
        page.set_Border(border)
        # get clipped relative coordinates for current image
        page_image, page_xywh, _ = self.workspace.image_from_page(
            page, input_file.pageId, fill='background', transparency=True)
        file_id = make_file_id(input_file, self.output_file_grp)
        file_path = self.workspace.save_image_file(
            page_image,
            file_id + '.IMG-CROP',
            page_id=input_file.pageId,
            file_grp=self.output_file_grp)
        page.add_AlternativeImage(
            AlternativeImageType(filename=file_path,
                                 comments=page_xywh['features']))
コード例 #18
0
    def process(self):
        """Performs region segmentation by reading mask images in pseudo-colour.
        
        Open and deserialize each PAGE input file (or generate from image input file)
        from the first input file group, as well as mask image file from the second.
        
        Then iterate over all connected (equally colored) mask segments and compute
        convex hull contours for them. Convert them to polygons, and look up their
        color value in ``colordict`` to instantiate the appropriate region types
        (optionally with subtype). Instantiate and annotate regions accordingly.
        
        Produce a new output file by serialising the resulting hierarchy.
        """
        colordict = self.parameter['colordict']
        if not colordict:
            LOG.info('Using default PAGE colordict')
            colordict = dict(('#' + col, name)
                             for name, col in CLASSES.items()
                             if name)
        typedict = {"TextRegion": TextTypeSimpleType,
                    "GraphicRegion": GraphicsTypeSimpleType,
                    "ChartType": ChartTypeSimpleType}
        ifgs = self.input_file_grp.split(",") # input file groups
        if len(ifgs) != 2:
            raise Exception("need 2 input file groups (base and mask)")
        # collect input file tuples
        ifts = self.zip_input_files(ifgs) # input file tuples
        # process input file tuples
        for n, ift in enumerate(ifts):
            input_file, segmentation_file = ift
            LOG.info("processing page %s", input_file.pageId)
            pcgts = page_from_file(self.workspace.download_file(input_file))
            page = pcgts.get_Page()

            # add metadata about this operation and its runtime parameters:
            metadata = pcgts.get_Metadata() # ensured by from_file()
            metadata.add_MetadataItem(
                MetadataItemType(type_="processingStep",
                                 name=self.ocrd_tool['steps'][0],
                                 value=TOOL,
                                 Labels=[LabelsType(
                                     externalModel="ocrd-tool",
                                     externalId="parameters",
                                     Label=[LabelType(type_=name,
                                                      value=self.parameter[name])
                                            for name in self.parameter.keys()])]))

            # import mask image
            segmentation_filename = self.workspace.download_file(segmentation_file).local_filename
            with pushd_popd(self.workspace.directory):
                segmentation_pil = Image.open(segmentation_filename)
            has_alpha = segmentation_pil.mode == 'RGBA'
            if has_alpha:
                colorformat = "#%08X"
            else:
                colorformat = "#%06X"
                if segmentation_pil.mode != 'RGB':
                    segmentation_pil = segmentation_pil.convert('RGB')
            # convert to array
            segmentation_array = np.array(segmentation_pil)
            # collapse 3 color channels
            segmentation_array = segmentation_array.dot(
                np.array([2**24, 2**16, 2**8, 1], np.uint32)[0 if has_alpha else 1:])
            # partition mapped colors vs background
            colors = np.unique(segmentation_array)
            bgcolors = []
            for i, color in enumerate(colors):
                colorname = colorformat % color
                if (colorname not in colordict or
                    not colordict[colorname]):
                    #raise Exception("Unknown color %s (not in colordict)" % colorname)
                    LOG.info("Ignoring background color %s", colorname)
                    bgcolors.append(i)
            background = np.zeros_like(segmentation_array, np.uint8)
            if bgcolors:
                for i in bgcolors:
                    background += np.array(segmentation_array == colors[i], np.uint8)
                colors = np.delete(colors, bgcolors, 0)
            # iterate over mask for each mapped color/class
            regionno = 0
            for color in colors:
                # get region (sub)type
                colorname = colorformat % color
                classname = colordict[colorname]
                regiontype = None
                custom = None
                if ":" in classname:
                    classname, regiontype = classname.split(":")
                    if classname in typedict:
                        typename = membername(typedict[classname], regiontype)
                        if typename == regiontype:
                            # not predefined in PAGE: use other + custom
                            custom = "subtype:%s" % regiontype
                            regiontype = "other"
                    else:
                        custom = "subtype:%s" % regiontype
                if classname + "Type" not in globals():
                    raise Exception("Unknown class '%s' for color %s in colordict" % (classname, colorname))
                classtype = globals()[classname + "Type"]
                if classtype is BorderType:
                    # mask from all non-background regions
                    classmask = 1 - background
                else:
                    # mask from current color/class
                    classmask = np.array(segmentation_array == color, np.uint8)
                if not np.count_nonzero(classmask):
                    continue
                # now get the contours and make polygons for them
                contours, _ = cv2.findContours(classmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
                for contour in contours:
                    # (could also just take bounding boxes to avoid islands/inclusions...)
                    area = cv2.contourArea(contour)
                    # filter too small regions
                    area_pct = area / np.prod(segmentation_array.shape) * 100
                    if area < 100 and area_pct < 0.1:
                        LOG.warning('ignoring contour of only %.1f%% area for %s',
                                    area_pct, classname)
                        continue
                    LOG.info('found region %s:%s:%s with area %.1f%%',
                             classname, regiontype or '', custom or '', area_pct)
                    # simplify shape
                    poly = cv2.approxPolyDP(contour, 2, False)[:, 0, ::] # already ordered x,y
                    if len(poly) < 4:
                        LOG.warning('ignoring contour of only %d points (area %.1f%%) for %s',
                                    len(poly), area_pct, classname)
                        continue
                    if classtype is BorderType:
                        # add Border
                        page.set_Border(BorderType(Coords=CoordsType(points=points_from_polygon(poly))))
                        break
                    else:
                        # instantiate region
                        regionno += 1
                        region = classtype(id="region_%d" % regionno, type_=regiontype, custom=custom,
                                           Coords=CoordsType(points=points_from_polygon(poly)))
                        # add region
                        getattr(page, 'add_%s' % classname)(region)
                    
            # Use input_file's basename for the new file -
            # this way the files retain the same basenames:
            file_id = input_file.ID.replace(ifgs[0], self.output_file_grp)
            if file_id == input_file.ID:
                file_id = concat_padded(self.output_file_grp, n)
            self.workspace.add_file(
                ID=file_id,
                file_grp=self.output_file_grp,
                pageId=input_file.pageId,
                mimetype=MIMETYPE_PAGE,
                local_filename=os.path.join(self.output_file_grp,
                                            file_id + '.xml'),
                content=to_xml(pcgts))
コード例 #19
0
ファイル: recognize.py プロジェクト: jacektl/ocrd_cis
    def process_lines(self, textlines, maxlevel, region_image, region_coords):
        edits = 0
        lengs = 0
        for line in textlines:
            line_image, line_coords = self.workspace.image_from_segment(
                line, region_image, region_coords)

            self.logger.info("Recognizing text in line '%s'", line.id)
            if line.get_TextEquiv():
                linegt = line.TextEquiv[0].Unicode
            else:
                linegt = ''
            self.logger.debug("GT  '%s': '%s'", line.id, linegt)
            # remove existing annotation below line level:
            line.set_TextEquiv([])
            line.set_Word([])

            if line_image.size[1] < 16:
                self.logger.debug(
                    "ERROR: bounding box is too narrow at line %s", line.id)
                continue
            # resize image to 48 pixel height
            final_img, scale = resize_keep_ratio(line_image)

            # process ocropy:
            try:
                linepred, clist, rlist, confidlist = recognize(final_img,
                                                               self.pad,
                                                               self.network,
                                                               check=True)
            except Exception as err:
                self.logger.debug('error processing line "%s": %s', line.id,
                                  err)
                continue
            self.logger.debug("OCR '%s': '%s'", line.id, linepred)
            edits += Levenshtein.distance(linepred, linegt)
            lengs += len(linegt)

            words = [x.strip() for x in linepred.split(' ') if x.strip()]

            word_r_list = [[0]]  # r-positions of every glyph in every word
            word_conf_list = [[]]  # confidences of every glyph in every word
            if words != []:
                w_no = 0
                found_char = False
                for i, c in enumerate(clist):
                    if c != ' ':
                        found_char = True
                        word_conf_list[w_no].append(confidlist[i])
                        word_r_list[w_no].append(rlist[i])

                    if c == ' ' and found_char:
                        if i == 0:
                            word_r_list[0][0] = rlist[i]

                        elif i + 1 <= len(clist) - 1 and clist[i + 1] != ' ':
                            word_conf_list.append([])
                            word_r_list.append([rlist[i]])
                            w_no += 1
            else:
                word_conf_list = [[0]]
                word_r_list = [[0, line_image.width]]

            # conf for each word
            wordsconf = [(min(x) + max(x)) / 2 for x in word_conf_list]
            # conf for the line
            line_conf = (min(wordsconf) + max(wordsconf)) / 2
            # line text
            line.add_TextEquiv(TextEquivType(Unicode=linepred, conf=line_conf))

            if maxlevel in ['word', 'glyph']:
                for word_no, word_str in enumerate(words):
                    word_points = points_from_polygon(
                        coordinates_for_segment(
                            np.array(
                                polygon_from_bbox(
                                    word_r_list[word_no][0] / scale, 0,
                                    word_r_list[word_no][-1] / scale,
                                    0 + line_image.height)), line_image,
                            line_coords))
                    word_id = '%s_word%04d' % (line.id, word_no)
                    word = WordType(id=word_id, Coords=CoordsType(word_points))
                    line.add_Word(word)
                    word.add_TextEquiv(
                        TextEquivType(Unicode=word_str,
                                      conf=wordsconf[word_no]))

                    if maxlevel == 'glyph':
                        for glyph_no, glyph_str in enumerate(word_str):
                            glyph_points = points_from_polygon(
                                coordinates_for_segment(
                                    np.array(
                                        polygon_from_bbox(
                                            word_r_list[word_no][glyph_no] /
                                            scale, 0,
                                            word_r_list[word_no][glyph_no + 1]
                                            / scale, 0 + line_image.height)),
                                    line_image, line_coords))
                            glyph_id = '%s_glyph%04d' % (word.id, glyph_no)
                            glyph = GlyphType(id=glyph_id,
                                              Coords=CoordsType(glyph_points))
                            word.add_Glyph(glyph)
                            glyph.add_TextEquiv(
                                TextEquivType(
                                    Unicode=glyph_str,
                                    conf=word_conf_list[word_no][glyph_no]))
        return edits, lengs
コード例 #20
0
ファイル: segment.py プロジェクト: cisocrgroup/ocrd_cis
    def _process_element(self,
                         element,
                         ignore,
                         image,
                         coords,
                         element_id,
                         file_id,
                         page_id,
                         zoom=1.0,
                         rogroup=None):
        """Add PAGE layout elements by segmenting an image.

        Given a PageType, TableRegionType or TextRegionType ``element``, and
        a corresponding binarized PIL.Image object ``image`` with coordinate
        metadata ``coords``, run line segmentation with Ocropy.
        
        If operating on the full page (or table), then also detect horizontal
        and vertical separators, and aggregate the lines into text regions
        afterwards.
        
        Add the resulting sub-segments to the parent ``element``.
        
        If ``ignore`` is not empty, then first suppress all foreground components
        in any of those segments' coordinates during segmentation, and if also
        in full page/table mode, then combine all separators among them with the
        newly detected separators to guide region segmentation.
        """
        LOG = getLogger('processor.OcropySegment')
        if not image.width or not image.height:
            LOG.warning("Skipping '%s' with zero size", element_id)
            return
        element_array = pil2array(image)
        element_bin = np.array(element_array <= midrange(element_array),
                               np.bool)
        sep_bin = np.zeros_like(element_bin, np.bool)
        ignore_labels = np.zeros_like(element_bin, np.int)
        for i, segment in enumerate(ignore):
            LOG.debug('masking foreground of %s "%s" for "%s"',
                      type(segment).__name__[:-4], segment.id, element_id)
            # mark these segments (e.g. separator regions, tables, images)
            # for workflows where they have been detected already;
            # these will be:
            # - ignored during text line segmentation (but not h/v-line detection)
            # - kept and reading-ordered during region segmentation (but not seps)
            segment_polygon = coordinates_of_segment(segment, image, coords)
            # If segment_polygon lies outside of element (causing
            # negative/above-max indices), either fully or partially,
            # then this will silently ignore them. The caller does
            # not need to concern herself with this.
            if isinstance(segment, SeparatorRegionType):
                sep_bin[draw.polygon(segment_polygon[:, 1], segment_polygon[:,
                                                                            0],
                                     sep_bin.shape)] = True
            ignore_labels[draw.polygon(
                segment_polygon[:, 1], segment_polygon[:, 0],
                ignore_labels.shape)] = i + 1  # mapped back for RO
        if isinstance(element, PageType):
            element_name = 'page'
            fullpage = True
            report = check_page(element_bin, zoom)
        elif isinstance(element, TableRegionType) or (
                # sole/congruent text region of a table region?
                element.id.endswith('_text')
                and isinstance(element.parent_object_, TableRegionType)):
            element_name = 'table'
            fullpage = True
            report = check_region(element_bin, zoom)
        else:
            element_name = 'region'
            fullpage = False
            report = check_region(element_bin, zoom)
        LOG.info('computing line segmentation for %s "%s"', element_name,
                 element_id)
        # TODO: we should downscale if DPI is large enough to save time
        try:
            if report:
                raise Exception(report)
            line_labels, hlines, vlines, images, colseps, scale = compute_segmentation(
                # suppress separators and ignored regions for textline estimation
                # but keep them for h/v-line detection (in fullpage mode):
                element_bin,
                seps=(sep_bin + ignore_labels) > 0,
                zoom=zoom,
                fullpage=fullpage,
                spread_dist=round(self.parameter['spread'] / zoom * 300 /
                                  72),  # in pt
                # these are ignored when not in fullpage mode:
                maxcolseps=self.parameter['maxcolseps'],
                maxseps=self.parameter['maxseps'],
                maximages=self.parameter['maximages']
                if element_name != 'table' else 0,
                csminheight=self.parameter['csminheight'],
                hlminwidth=self.parameter['hlminwidth'])
        except Exception as err:
            if isinstance(element, TextRegionType):
                LOG.error('Cannot line-segment region "%s": %s', element_id,
                          err)
                # as a fallback, add a single text line comprising the whole region:
                element.add_TextLine(
                    TextLineType(id=element_id + "_line",
                                 Coords=element.get_Coords()))
            else:
                LOG.error('Cannot line-segment %s "%s": %s', element_name,
                          element_id, err)
            return

        LOG.info('Found %d text lines for %s "%s"',
                 len(np.unique(line_labels)) - 1, element_name, element_id)
        # post-process line labels
        if isinstance(element, (PageType, TableRegionType)):
            # aggregate text lines to text regions
            try:
                # pass ignored regions as "line labels with initial assignment",
                # i.e. identical line and region labels
                # to detect their reading order among the others
                # (these cannot be split or grouped together with other regions)
                line_labels = np.where(line_labels, line_labels + len(ignore),
                                       ignore_labels)
                # suppress separators/images in fg and try to use for partitioning slices
                sepmask = np.maximum(np.maximum(hlines, vlines),
                                     np.maximum(sep_bin, images))
                region_labels = lines2regions(
                    element_bin,
                    line_labels,
                    rlabels=ignore_labels,
                    sepmask=np.maximum(sepmask, colseps),  # add bg
                    # decide horizontal vs vertical cut when gaps of similar size
                    prefer_vertical=not isinstance(element, TableRegionType),
                    gap_height=self.parameter['gap_height'],
                    gap_width=self.parameter['gap_width'],
                    scale=scale,
                    zoom=zoom)
                LOG.info('Found %d text regions for %s "%s"',
                         len(np.unique(region_labels)) - 1, element_name,
                         element_id)
            except Exception as err:
                LOG.error('Cannot region-segment %s "%s": %s', element_name,
                          element_id, err)
                region_labels = np.where(line_labels > len(ignore),
                                         1 + len(ignore), line_labels)

            # prepare reading order group index
            if rogroup:
                if isinstance(rogroup,
                              (OrderedGroupType, OrderedGroupIndexedType)):
                    index = 0
                    # start counting from largest existing index
                    for elem in (rogroup.get_RegionRefIndexed() +
                                 rogroup.get_OrderedGroupIndexed() +
                                 rogroup.get_UnorderedGroupIndexed()):
                        if elem.index >= index:
                            index = elem.index + 1
                else:
                    index = None
            # find contours around region labels (can be non-contiguous):
            region_no = 0
            for region_label in np.unique(region_labels):
                if not region_label:
                    continue  # no bg
                region_mask = region_labels == region_label
                region_line_labels = line_labels * region_mask
                region_line_labels0 = np.setdiff1d(region_line_labels, [0])
                if not np.all(region_line_labels0 > len(ignore)):
                    # existing region from `ignore` merely to be ordered
                    # (no new region, no actual text lines)
                    region_line_labels0 = np.intersect1d(
                        region_line_labels0, ignore_labels)
                    assert len(region_line_labels0) == 1, \
                        "region label %d has both existing regions and new lines (%s)" % (
                            region_label, str(region_line_labels0))
                    region = ignore[region_line_labels0[0] - 1]
                    if rogroup and region.parent_object_ == element and not isinstance(
                            region, SeparatorRegionType):
                        index = page_add_to_reading_order(
                            rogroup, region.id, index)
                    LOG.debug('Region label %d is for ignored region "%s"',
                              region_label, region.id)
                    continue
                # normal case: new lines inside new regions
                # remove binary-empty labels, and re-order locally
                order = morph.reading_order(region_line_labels)
                order[np.setdiff1d(region_line_labels0,
                                   element_bin * region_line_labels)] = 0
                region_line_labels = order[region_line_labels]
                # avoid horizontal gaps
                region_line_labels = hmerge_line_seeds(element_bin,
                                                       region_line_labels,
                                                       scale,
                                                       seps=np.maximum(
                                                           sepmask, colseps))
                region_mask |= region_line_labels > 0
                # find contours for region (can be non-contiguous)
                regions, _ = masks2polygons(
                    region_mask * region_label,
                    element_bin,
                    '%s "%s"' % (element_name, element_id),
                    min_area=6000 / zoom / zoom,
                    simplify=ignore_labels * ~(sep_bin))
                # find contours for lines (can be non-contiguous)
                lines, _ = masks2polygons(region_line_labels,
                                          element_bin,
                                          'region "%s"' % element_id,
                                          min_area=640 / zoom / zoom)
                # create new lines in new regions (allocating by intersection)
                line_polys = [Polygon(polygon) for _, polygon in lines]
                for _, region_polygon in regions:
                    region_poly = prep(Polygon(region_polygon))
                    # convert back to absolute (page) coordinates:
                    region_polygon = coordinates_for_segment(
                        region_polygon, image, coords)
                    region_polygon = polygon_for_parent(
                        region_polygon, element)
                    if region_polygon is None:
                        LOG.warning(
                            'Ignoring extant region contour for region label %d',
                            region_label)
                        continue
                    # annotate result:
                    region_no += 1
                    region_id = element_id + "_region%04d" % region_no
                    LOG.debug('Region label %d becomes ID "%s"', region_label,
                              region_id)
                    region = TextRegionType(
                        id=region_id,
                        Coords=CoordsType(
                            points=points_from_polygon(region_polygon)))
                    # find out which line (contours) belong to which region (contours)
                    line_no = 0
                    for i, line_poly in enumerate(line_polys):
                        if not region_poly.intersects(line_poly):  # .contains
                            continue
                        line_label, line_polygon = lines[i]
                        # convert back to absolute (page) coordinates:
                        line_polygon = coordinates_for_segment(
                            line_polygon, image, coords)
                        line_polygon = polygon_for_parent(line_polygon, region)
                        if line_polygon is None:
                            LOG.warning(
                                'Ignoring extant line contour for region label %d line label %d',
                                region_label, line_label)
                            continue
                        # annotate result:
                        line_no += 1
                        line_id = region_id + "_line%04d" % line_no
                        LOG.debug('Line label %d becomes ID "%s"', line_label,
                                  line_id)
                        line = TextLineType(
                            id=line_id,
                            Coords=CoordsType(
                                points=points_from_polygon(line_polygon)))
                        region.add_TextLine(line)
                    # if the region has received text lines, keep it
                    if region.get_TextLine():
                        element.add_TextRegion(region)
                        LOG.info('Added region "%s" with %d lines for %s "%s"',
                                 region_id, line_no, element_name, element_id)
                        if rogroup:
                            index = page_add_to_reading_order(
                                rogroup, region.id, index)
            # add additional image/non-text regions from compute_segmentation
            # (e.g. drop-capitals or images) ...
            image_labels, num_images = morph.label(images)
            LOG.info('Found %d large non-text/image regions for %s "%s"',
                     num_images, element_name, element_id)
            # find contours around region labels (can be non-contiguous):
            image_polygons, _ = masks2polygons(
                image_labels, element_bin,
                '%s "%s"' % (element_name, element_id))
            for image_label, polygon in image_polygons:
                # convert back to absolute (page) coordinates:
                region_polygon = coordinates_for_segment(
                    polygon, image, coords)
                region_polygon = polygon_for_parent(region_polygon, element)
                if region_polygon is None:
                    LOG.warning(
                        'Ignoring extant region contour for image label %d',
                        image_label)
                    continue
                region_no += 1
                # annotate result:
                region_id = element_id + "_image%04d" % region_no
                element.add_ImageRegion(
                    ImageRegionType(
                        id=region_id,
                        Coords=CoordsType(
                            points=points_from_polygon(region_polygon))))
            # split rulers into separator regions:
            hline_labels, num_hlines = morph.label(hlines)
            vline_labels, num_vlines = morph.label(vlines)
            LOG.info('Found %d/%d h/v-lines for %s "%s"', num_hlines,
                     num_vlines, element_name, element_id)
            # find contours around region labels (can be non-contiguous):
            hline_polygons, _ = masks2polygons(
                hline_labels, element_bin,
                '%s "%s"' % (element_name, element_id))
            vline_polygons, _ = masks2polygons(
                vline_labels, element_bin,
                '%s "%s"' % (element_name, element_id))
            for _, polygon in hline_polygons + vline_polygons:
                # convert back to absolute (page) coordinates:
                region_polygon = coordinates_for_segment(
                    polygon, image, coords)
                region_polygon = polygon_for_parent(region_polygon, element)
                if region_polygon is None:
                    LOG.warning('Ignoring extant region contour for separator')
                    continue
                # annotate result:
                region_no += 1
                region_id = element_id + "_sep%04d" % region_no
                element.add_SeparatorRegion(
                    SeparatorRegionType(
                        id=region_id,
                        Coords=CoordsType(
                            points=points_from_polygon(region_polygon))))
            # annotate a text/image-separated image
            element_array[sepmask] = np.amax(element_array)  # clip to white/bg
            image_clipped = array2pil(element_array)
            file_path = self.workspace.save_image_file(
                image_clipped,
                file_id + '.IMG-CLIP',
                page_id=page_id,
                file_grp=self.output_file_grp)
            element.add_AlternativeImage(
                AlternativeImageType(filename=file_path,
                                     comments=coords['features'] + ',clipped'))
        else:
            # get mask from region polygon:
            region_polygon = coordinates_of_segment(element, image, coords)
            region_mask = np.zeros_like(element_bin, np.bool)
            region_mask[draw.polygon(region_polygon[:, 1], region_polygon[:,
                                                                          0],
                                     region_mask.shape)] = True
            # ensure the new line labels do not extrude from the region:
            line_labels = line_labels * region_mask
            # find contours around labels (can be non-contiguous):
            line_polygons, _ = masks2polygons(line_labels,
                                              element_bin,
                                              'region "%s"' % element_id,
                                              min_area=640 / zoom / zoom)
            line_no = 0
            for line_label, polygon in line_polygons:
                # convert back to absolute (page) coordinates:
                line_polygon = coordinates_for_segment(polygon, image, coords)
                line_polygon = polygon_for_parent(line_polygon, element)
                if line_polygon is None:
                    LOG.warning(
                        'Ignoring extant line contour for line label %d',
                        line_label)
                    continue
                # annotate result:
                line_no += 1
                line_id = element_id + "_line%04d" % line_no
                element.add_TextLine(
                    TextLineType(
                        id=line_id,
                        Coords=CoordsType(
                            points=points_from_polygon(line_polygon))))
            if not sep_bin.any():
                return  # no derived image
            # annotate a text/image-separated image
            element_array[sep_bin] = np.amax(element_array)  # clip to white/bg
            image_clipped = array2pil(element_array)
            file_path = self.workspace.save_image_file(
                image_clipped,
                file_id + '.IMG-CLIP',
                page_id=page_id,
                file_grp=self.output_file_grp)
            # update PAGE (reference the image file):
            element.add_AlternativeImage(
                AlternativeImageType(filename=file_path,
                                     comments=coords['features'] + ',clipped'))
コード例 #21
0
def _plausibilize_group(regionspolys, rogroup, mark_for_deletion,
                        mark_for_merging):
    wait_for_deletion = list()
    reading_order = dict()
    ordered = False
    if isinstance(rogroup, (OrderedGroupType, OrderedGroupIndexedType)):
        regionrefs = (rogroup.get_RegionRefIndexed() +
                      rogroup.get_OrderedGroupIndexed() +
                      rogroup.get_UnorderedGroupIndexed())
        ordered = True
    if isinstance(rogroup, (UnorderedGroupType, UnorderedGroupIndexedType)):
        regionrefs = (rogroup.get_RegionRef() + rogroup.get_OrderedGroup() +
                      rogroup.get_UnorderedGroup())
    for elem in regionrefs:
        reading_order[elem.get_regionRef()] = elem
        if not isinstance(elem, (RegionRefType, RegionRefIndexedType)):
            # recursive reading order element (un/ordered group):
            _plausibilize_group(regionspolys, elem, mark_for_deletion,
                                mark_for_merging)
    for regionpoly in regionspolys:
        delete = regionpoly.region.id in mark_for_deletion
        merge = regionpoly.region.id in mark_for_merging
        if delete or merge:
            region = regionpoly.region
            poly = regionpoly.polygon
            if merge:
                # merge region with super region:
                superreg = mark_for_merging[region.id]
                # granularity will necessarily be lost here --
                # this is not for workflows/processors that already
                # provide good/correct segmentation and reading order
                # (in which case orientation, script and style detection
                #  can be expected as well), but rather as a postprocessor
                # for suboptimal segmentation (possibly before reading order
                # detection/correction); hence, all we now do here is
                # show warnings when granularity is lost; but there might
                # be good reasons to do more here when we have better processors
                # and use-cases in the future
                superpoly = Polygon(
                    polygon_from_points(superreg.get_Coords().points))
                superpoly = superpoly.union(poly)
                superreg.get_Coords().points = points_from_polygon(
                    superpoly.exterior.coords)
                # FIXME should we merge/mix attributes and features?
                if region.get_orientation() != superreg.get_orientation():
                    LOG.warning(
                        'Merging region "%s" with orientation %f into "%s" with %f',
                        region.id, region.get_orientation(), superreg.id,
                        superreg.get_orientation())
                if region.get_type() != superreg.get_type():
                    LOG.warning(
                        'Merging region "%s" with type %s into "%s" with %s',
                        region.id, region.get_type(), superreg.id,
                        superreg.get_type())
                if region.get_primaryScript() != superreg.get_primaryScript():
                    LOG.warning(
                        'Merging region "%s" with primaryScript %s into "%s" with %s',
                        region.id, region.get_primaryScript(), superreg.id,
                        superreg.get_primaryScript())
                if region.get_primaryLanguage(
                ) != superreg.get_primaryLanguage():
                    LOG.warning(
                        'Merging region "%s" with primaryLanguage %s into "%s" with %s',
                        region.id, region.get_primaryLanguage(), superreg.id,
                        superreg.get_primaryLanguage())
                if region.get_TextStyle():
                    LOG.warning(
                        'Merging region "%s" with TextStyle %s into "%s" with %s',
                        region.id,
                        region.get_TextStyle(),  # FIXME needs repr...
                        superreg.id,
                        superreg.get_TextStyle())  # ...to be informative
                if region.get_TextEquiv():
                    LOG.warning(
                        'Merging region "%s" with TextEquiv %s into "%s" with %s',
                        region.id,
                        region.get_TextEquiv(),  # FIXME needs repr...
                        superreg.id,
                        superreg.get_TextEquiv())  # ...to be informative
            wait_for_deletion.append(region)
            if region.id in reading_order:
                regionref = reading_order[region.id]
                # TODO: re-assign regionref.continuation and regionref.type to other?
                # could be any of the 6 types above:
                regionrefs = rogroup.__getattribute__(
                    regionref.__class__.__name__.replace('Type', ''))
                # remove in-place
                regionrefs.remove(regionref)

    if ordered:
        # re-index the reading order!
        regionrefs.sort(key=RegionRefIndexedType.get_index)
        for i, regionref in enumerate(regionrefs):
            regionref.set_index(i)

    for region in wait_for_deletion:
        if region.parent_object_:
            # remove in-place
            region.parent_object_.get_TextRegion().remove(region)
コード例 #22
0
    def process(self):
        """Performs word segmentation with Tesseract on the workspace.
        
        Open and deserialize PAGE input files and their respective images,
        then iterate over the element hierarchy down to the textline level,
        and remove any existing Word elements (unless ``overwrite_words``
        is False).
        
        Set up Tesseract to detect words, and add each one to the line
        at the detected coordinates.
        
        Produce a new output file by serialising the resulting hierarchy.
        """
        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        overwrite_words = self.parameter['overwrite_words']

        with PyTessBaseAPI(
            psm=PSM.SINGLE_LINE,
            path=TESSDATA_PREFIX
        ) as tessapi:
            for (n, input_file) in enumerate(self.input_files):
                page_id = input_file.pageId or input_file.ID
                LOG.info("INPUT FILE %i / %s", n, page_id)
                pcgts = page_from_file(self.workspace.download_file(input_file))
                page = pcgts.get_Page()
                
                # add metadata about this operation and its runtime parameters:
                metadata = pcgts.get_Metadata() # ensured by from_file()
                metadata.add_MetadataItem(
                    MetadataItemType(type_="processingStep",
                                     name=self.ocrd_tool['steps'][0],
                                     value=TOOL,
                                     Labels=[LabelsType(
                                         externalModel="ocrd-tool",
                                         externalId="parameters",
                                         Label=[LabelType(type_=name,
                                                          value=self.parameter[name])
                                                for name in self.parameter.keys()])]))
                page_image, page_coords, page_image_info = self.workspace.image_from_page(
                    page, page_id)
                if self.parameter['dpi'] > 0:
                    dpi = self.parameter['dpi']
                    LOG.info("Page '%s' images will use %d DPI from parameter override", page_id, dpi)
                elif page_image_info.resolution != 1:
                    dpi = page_image_info.resolution
                    if page_image_info.resolutionUnit == 'cm':
                        dpi = round(dpi * 2.54)
                    LOG.info("Page '%s' images will use %d DPI from image meta-data", page_id, dpi)
                else:
                    dpi = 0
                    LOG.info("Page '%s' images will use DPI estimated from segmentation", page_id)
                if dpi:
                    tessapi.SetVariable('user_defined_dpi', str(dpi))
                
                for region in page.get_TextRegion():
                    region_image, region_coords = self.workspace.image_from_segment(
                        region, page_image, page_coords)
                    for line in region.get_TextLine():
                        if line.get_Word():
                            if overwrite_words:
                                LOG.info('removing existing Words in line "%s"', line.id)
                                line.set_Word([])
                            else:
                                LOG.warning('keeping existing Words in line "%s"', line.id)
                        LOG.debug("Detecting words in line '%s'", line.id)
                        line_image, line_coords = self.workspace.image_from_segment(
                            line, region_image, region_coords)
                        tessapi.SetImage(line_image)
                        for word_no, component in enumerate(tessapi.GetComponentImages(RIL.WORD, True, raw_image=True)):
                            word_id = '%s_word%04d' % (line.id, word_no)
                            word_polygon = polygon_from_xywh(component[1])
                            word_polygon = coordinates_for_segment(word_polygon, line_image, line_coords)
                            word_points = points_from_polygon(word_polygon)
                            line.add_Word(WordType(
                                id=word_id, Coords=CoordsType(word_points)))
                            
                file_id = make_file_id(input_file, self.output_file_grp)
                pcgts.set_pcGtsId(file_id)
                self.workspace.add_file(
                    ID=file_id,
                    file_grp=self.output_file_grp,
                    pageId=input_file.pageId,
                    mimetype=MIMETYPE_PAGE,
                    local_filename=os.path.join(self.output_file_grp,
                                                file_id + '.xml'),
                    content=to_xml(pcgts))
コード例 #23
0
    def process(self):
        log = getLogger('processor.OcrdSbbTextlineDetectorRecognize')
        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, input_file)

            file_id = make_file_id(input_file, self.output_file_grp)

            # Process the files
            try:
                os.mkdir(self.output_file_grp)
            except FileExistsError:
                pass

            pcgts = page_from_file(self.workspace.download_file(input_file))
            page = pcgts.get_Page()
            page_image, page_coords, page_image_info = \
                self.workspace.image_from_page(
                        page, page_id,
                        feature_filter='cropped,binarized,grayscale_normalized'
                )

            with tempfile.TemporaryDirectory() as tmp_dirname:
                # Save the image
                image_file = tempfile.mkstemp(dir=tmp_dirname,
                                              suffix='.png')[1]
                page_image.save(image_file)

                # Segment the image
                model = self.parameter['model']
                x = textline_detector(image_file, tmp_dirname, file_id, model)
                x.run()

                # Read segmentation results
                tmp_filename = os.path.join(tmp_dirname, file_id) + '.xml'
                tmp_pcgts = ocrd_models.ocrd_page.parse(tmp_filename,
                                                        silence=True)
                tmp_page = tmp_pcgts.get_Page()

            # Create a new PAGE file from the input file
            pcgts.set_pcGtsId(file_id)
            page = pcgts.get_Page()

            # Merge results → PAGE file

            # 1. Border
            if page.get_Border():
                log.warning("Page already contained a border")
            # We need to translate the coordinates:
            text_border = tmp_page.get_Border()
            coords = text_border.get_Coords().get_points()
            polygon = polygon_from_points(coords)
            polygon_new = coordinates_for_segment(polygon, page_image,
                                                  page_coords)
            points_new = points_from_polygon(polygon_new)
            coords_new = CoordsType(points=points_new)
            text_border.set_Coords(coords_new)
            page.set_Border(text_border)

            # 2. ReadingOrder
            if page.get_ReadingOrder():
                log.warning("Page already contained a reading order")
            page.set_ReadingOrder(tmp_page.get_ReadingOrder())

            # 3. TextRegion
            if page.get_TextRegion():
                log.warning("Page already contained text regions")
            # We need to translate the coordinates:
            text_regions_new = []
            for text_region in tmp_page.get_TextRegion():
                coords = text_region.get_Coords().get_points()
                polygon = polygon_from_points(coords)
                polygon_new = coordinates_for_segment(polygon, page_image,
                                                      page_coords)
                points_new = points_from_polygon(polygon_new)
                coords_new = CoordsType(points=points_new)
                text_region.set_Coords(coords_new)
                text_regions_new.append(text_region)
            page.set_TextRegion(text_regions_new)

            # Save metadata about this operation
            metadata = pcgts.get_Metadata()
            metadata.add_MetadataItem(
                MetadataItemType(
                    type_="processingStep",
                    name=self.ocrd_tool['steps'][0],
                    value=TOOL,
                    Labels=[
                        LabelsType(externalModel="ocrd-tool",
                                   externalId="parameters",
                                   Label=[
                                       LabelType(type_=name,
                                                 value=self.parameter[name])
                                       for name in self.parameter.keys()
                                   ])
                    ]))

            self.workspace.add_file(
                ID=file_id,
                file_grp=self.output_file_grp,
                pageId=page_id,
                mimetype='application/vnd.prima.page+xml',
                local_filename=os.path.join(self.output_file_grp, file_id) +
                '.xml',
                content=ocrd_models.ocrd_page.to_xml(pcgts))
コード例 #24
0
    def process(self):
        """Performs (text) line segmentation with Tesseract on the workspace.
        
        Open and deserialize PAGE input files and their respective images,
        then iterate over the element hierarchy down to the (text) region level,
        and remove any existing TextLine elements (unless ``overwrite_lines``
        is False).
        
        Set up Tesseract to detect lines, and add each one to the region
        at the detected coordinates.
        
        Produce a new output file by serialising the resulting hierarchy.
        """
        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        overwrite_lines = self.parameter['overwrite_lines']
        
        with PyTessBaseAPI(
                psm=PSM.SINGLE_BLOCK,
                path=TESSDATA_PREFIX
        ) as tessapi:
            for (n, input_file) in enumerate(self.input_files):
                page_id = input_file.pageId or input_file.ID
                LOG.info("INPUT FILE %i / %s", n, page_id)
                pcgts = page_from_file(self.workspace.download_file(input_file))
                page = pcgts.get_Page()
                
                # add metadata about this operation and its runtime parameters:
                metadata = pcgts.get_Metadata() # ensured by from_file()
                metadata.add_MetadataItem(
                    MetadataItemType(type_="processingStep",
                                     name=self.ocrd_tool['steps'][0],
                                     value=TOOL,
                                     Labels=[LabelsType(
                                         externalModel="ocrd-tool",
                                         externalId="parameters",
                                         Label=[LabelType(type_=name,
                                                          value=self.parameter[name])
                                                for name in self.parameter.keys()])]))
                
                page_image, page_coords, page_image_info = self.workspace.image_from_page(
                    page, page_id)
                if self.parameter['dpi'] > 0:
                    dpi = self.parameter['dpi']
                    LOG.info("Page '%s' images will use %d DPI from parameter override", page_id, dpi)
                elif page_image_info.resolution != 1:
                    dpi = page_image_info.resolution
                    if page_image_info.resolutionUnit == 'cm':
                        dpi = round(dpi * 2.54)
                    LOG.info("Page '%s' images will use %d DPI from image meta-data", page_id, dpi)
                else:
                    dpi = 0
                    LOG.info("Page '%s' images will use DPI estimated from segmentation", page_id)
                if dpi:
                    tessapi.SetVariable('user_defined_dpi', str(dpi))
                
                for region in itertools.chain.from_iterable(
                        [page.get_TextRegion()] +
                        [subregion.get_TextRegion() for subregion in page.get_TableRegion()]):
                    if region.get_TextLine():
                        if overwrite_lines:
                            LOG.info('removing existing TextLines in region "%s"', region.id)
                            region.set_TextLine([])
                        else:
                            LOG.warning('keeping existing TextLines in region "%s"', region.id)
                    LOG.debug("Detecting lines in region '%s'", region.id)
                    region_image, region_coords = self.workspace.image_from_segment(
                        region, page_image, page_coords)
                    region_polygon = coordinates_of_segment(region, region_image, region_coords)
                    region_poly = Polygon(region_polygon)
                    tessapi.SetImage(region_image)
                    for line_no, component in enumerate(tessapi.GetComponentImages(RIL.TEXTLINE, True, raw_image=True)):
                        line_id = '%s_line%04d' % (region.id, line_no)
                        line_polygon = polygon_from_xywh(component[1])
                        line_poly = Polygon(line_polygon)
                        if not line_poly.within(region_poly):
                            # this could happen due to rotation
                            interline = line_poly.intersection(region_poly)
                            if interline.is_empty:
                                continue # ignore this line
                            if hasattr(interline, 'geoms'):
                                # is (heterogeneous) GeometryCollection
                                area = 0
                                for geom in interline.geoms:
                                    if geom.area > area:
                                        area = geom.area
                                        interline = geom
                                if not area:
                                    continue
                            line_poly = interline.convex_hull
                            line_polygon = line_poly.exterior.coords
                        line_polygon = coordinates_for_segment(line_polygon, region_image, region_coords)
                        line_points = points_from_polygon(line_polygon)
                        region.add_TextLine(TextLineType(
                            id=line_id, Coords=CoordsType(line_points)))
                
                file_id = make_file_id(input_file, self.output_file_grp)
                pcgts.set_pcGtsId(file_id)
                self.workspace.add_file(
                    ID=file_id,
                    file_grp=self.output_file_grp,
                    pageId=input_file.pageId,
                    mimetype=MIMETYPE_PAGE,
                    local_filename=os.path.join(self.output_file_grp,
                                                file_id + '.xml'),
                    content=to_xml(pcgts))
コード例 #25
0
    def process(self):
        """Extract page image and replace original with it.
        
        Open and deserialize PAGE input files and their respective images,
        then go to the page hierarchy level.
        
        Retrieve the image of the (cropped, deskewed, dewarped) page, preferring
        the last annotated form (which, depending on the workflow, could be
        binarized or raw). Add that image file to the workspace with the fileGrp
        USE given in the second position of the output fileGrp, or ``OCR-D-IMG-SUBST``.
        Reference that file in the page (not as AlternativeImage but) as original
        image. Adjust all segment coordinates accordingly.
        
        Produce a new output file by serialising the resulting hierarchy.
        """
        try:
            page_grp, image_grp = self.output_file_grp.split(',')
        except ValueError:
            page_grp = self.output_file_grp
            image_grp = FALLBACK_FILEGRP_IMG
            LOG.info(
                "No output file group for images specified, falling back to '%s'",
                image_grp)
        feature_selector = self.parameter['feature_selector']
        feature_filter = self.parameter['feature_filter']
        adapt_coords = self.parameter['transform_coordinates']

        # pylint: disable=attribute-defined-outside-init
        for n, input_file in enumerate(self.input_files):
            file_id = input_file.ID.replace(self.input_file_grp, page_grp)
            if file_id == input_file.ID:
                file_id = concat_padded(page_grp, n)
            page_id = input_file.pageId or input_file.ID
            LOG.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))
            page = pcgts.get_Page()
            metadata = pcgts.get_Metadata()  # ensured by from_file()
            metadata.add_MetadataItem(
                MetadataItemType(
                    type_="processingStep",
                    name=self.ocrd_tool['steps'][0],
                    value=TOOL,
                    Labels=[
                        LabelsType(externalModel="ocrd-tool",
                                   externalId="parameters",
                                   Label=[
                                       LabelType(type_=name,
                                                 value=self.parameter[name])
                                       for name in self.parameter
                                   ])
                    ]))
            page_image, page_coords, page_image_info = self.workspace.image_from_page(
                page,
                page_id,
                feature_filter=feature_filter,
                feature_selector=feature_selector)
            if page_image_info.resolution != 1:
                dpi = page_image_info.resolution
                if page_image_info.resolutionUnit == 'cm':
                    dpi = round(dpi * 2.54)
            else:
                dpi = None
            # annotate extracted image
            file_path = self.workspace.save_image_file(
                page_image,
                file_id.replace(page_grp, image_grp),
                image_grp,
                page_id=input_file.pageId,
                mimetype='image/png')
            # replace original image
            page.set_imageFilename(file_path)
            # adjust all coordinates
            if adapt_coords:
                for region in page.get_AllRegions():
                    region_polygon = coordinates_of_segment(
                        region, page_image, page_coords)
                    region.get_Coords().points = points_from_polygon(
                        region_polygon)
                    if isinstance(region, TextRegionType):
                        for line in region.get_TextLine():
                            line_polygon = coordinates_of_segment(
                                line, page_image, page_coords)
                            line.get_Coords().points = points_from_polygon(
                                line_polygon)
                            for word in line.get_Word():
                                word_polygon = coordinates_of_segment(
                                    word, page_image, page_coords)
                                word.get_Coords().points = points_from_polygon(
                                    word_polygon)
                                for glyph in word.get_Glyph():
                                    glyph_polygon = coordinates_of_segment(
                                        glyph, page_image, page_coords)
                                    glyph.get_Coords(
                                    ).points = points_from_polygon(
                                        glyph_polygon)

            # update METS (add the PAGE file):
            file_path = os.path.join(page_grp, file_id + '.xml')
            out = self.workspace.add_file(ID=file_id,
                                          file_grp=page_grp,
                                          pageId=input_file.pageId,
                                          local_filename=file_path,
                                          mimetype=MIMETYPE_PAGE,
                                          content=to_xml(pcgts))
            LOG.info('created file ID: %s, file_grp: %s, path: %s', file_id,
                     page_grp, out.local_filename)
コード例 #26
0
    def process(self):
        """Performs word segmentation with Tesseract on the workspace.
        
        Open and deserialize PAGE input files and their respective images,
        then iterate over the element hierarchy down to the textline level,
        and remove any existing Word elements (unless ``overwrite_words``
        is False).
        
        Set up Tesseract to detect words, and add each one to the line
        at the detected coordinates.
        
        Produce a new output file by serialising the resulting hierarchy.
        """
        LOG = getLogger('processor.TesserocrSegmentWord')
        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        overwrite_words = self.parameter['overwrite_words']

        with PyTessBaseAPI(
            psm=PSM.SINGLE_LINE,
            path=TESSDATA_PREFIX
        ) as tessapi:
            for (n, input_file) in enumerate(self.input_files):
                page_id = input_file.pageId or input_file.ID
                LOG.info("INPUT FILE %i / %s", n, page_id)
                pcgts = page_from_file(self.workspace.download_file(input_file))
                self.add_metadata(pcgts)
                page = pcgts.get_Page()
                
                page_image, page_coords, page_image_info = self.workspace.image_from_page(
                    page, page_id)
                if self.parameter['dpi'] > 0:
                    dpi = self.parameter['dpi']
                    LOG.info("Page '%s' images will use %d DPI from parameter override", page_id, dpi)
                elif page_image_info.resolution != 1:
                    dpi = page_image_info.resolution
                    if page_image_info.resolutionUnit == 'cm':
                        dpi = round(dpi * 2.54)
                    LOG.info("Page '%s' images will use %d DPI from image meta-data", page_id, dpi)
                else:
                    dpi = 0
                    LOG.info("Page '%s' images will use DPI estimated from segmentation", page_id)
                if dpi:
                    tessapi.SetVariable('user_defined_dpi', str(dpi))
                
                for region in page.get_TextRegion():
                    region_image, region_coords = self.workspace.image_from_segment(
                        region, page_image, page_coords)
                    for line in region.get_TextLine():
                        if line.get_Word():
                            if overwrite_words:
                                LOG.info('removing existing Words in line "%s"', line.id)
                                line.set_Word([])
                            else:
                                LOG.warning('keeping existing Words in line "%s"', line.id)
                        LOG.debug("Detecting words in line '%s'", line.id)
                        line_image, line_coords = self.workspace.image_from_segment(
                            line, region_image, region_coords)
                        tessapi.SetImage(line_image)
                        for word_no, component in enumerate(tessapi.GetComponentImages(RIL.WORD, True, raw_image=True)):
                            word_id = '%s_word%04d' % (line.id, word_no)
                            word_polygon = polygon_from_xywh(component[1])
                            word_polygon = coordinates_for_segment(word_polygon, line_image, line_coords)
                            word_polygon2 = polygon_for_parent(word_polygon, line)
                            if word_polygon2 is not None:
                                word_polygon = word_polygon2
                            word_points = points_from_polygon(word_polygon)
                            if word_polygon2 is None:
                                # could happen due to rotation
                                LOG.info('Ignoring extant word: %s', word_points)
                                continue
                            line.add_Word(WordType(
                                id=word_id, Coords=CoordsType(word_points)))
                            
                file_id = make_file_id(input_file, self.output_file_grp)
                pcgts.set_pcGtsId(file_id)
                self.workspace.add_file(
                    ID=file_id,
                    file_grp=self.output_file_grp,
                    pageId=input_file.pageId,
                    mimetype=MIMETYPE_PAGE,
                    local_filename=os.path.join(self.output_file_grp,
                                                file_id + '.xml'),
                    content=to_xml(pcgts))
コード例 #27
0
ファイル: recognize.py プロジェクト: mikegerber/ocrd_calamari
    def process(self):
        """
        Performs the recognition.
        """

        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        self._init_calamari()

        for (n, input_file) in enumerate(self.input_files):
            page_id = input_file.pageId or input_file.ID
            log.info("INPUT FILE %i / %s", n, page_id)
            pcgts = page_from_file(self.workspace.download_file(input_file))

            page = pcgts.get_Page()
            page_image, page_xywh, page_image_info = self.workspace.image_from_page(
                page, page_id)

            for region in pcgts.get_Page().get_TextRegion():
                region_image, region_xywh = self.workspace.image_from_segment(
                    region, page_image, page_xywh)

                textlines = region.get_TextLine()
                log.info("About to recognize %i lines of region '%s'",
                         len(textlines), region.id)
                for (line_no, line) in enumerate(textlines):
                    log.debug("Recognizing line '%s' in region '%s'", line.id,
                              region.id)

                    line_image, line_coords = self.workspace.image_from_segment(
                        line, region_image, region_xywh)
                    line_image_np = np.array(line_image, dtype=np.uint8)

                    raw_results = list(
                        self.predictor.predict_raw([line_image_np],
                                                   progress_bar=False))[0]
                    for i, p in enumerate(raw_results):
                        p.prediction.id = "fold_{}".format(i)

                    prediction = self.voter.vote_prediction_result(raw_results)
                    prediction.id = "voted"

                    # Build line text on our own
                    #
                    # Calamari does whitespace post-processing on prediction.sentence, while it does not do the same
                    # on prediction.positions. Do it on our own to have consistency.
                    #
                    # XXX Check Calamari's built-in post-processing on prediction.sentence

                    def _sort_chars(p):
                        """Filter and sort chars of prediction p"""
                        chars = p.chars
                        chars = [
                            c for c in chars if c.char
                        ]  # XXX Note that omission probabilities are not normalized?!
                        chars = [
                            c for c in chars if c.probability >=
                            self.parameter['glyph_conf_cutoff']
                        ]
                        chars = sorted(chars,
                                       key=lambda k: k.probability,
                                       reverse=True)
                        return chars

                    def _drop_leading_spaces(positions):
                        return list(
                            itertools.dropwhile(
                                lambda p: _sort_chars(p)[0].char == " ",
                                positions))

                    def _drop_trailing_spaces(positions):
                        return list(
                            reversed(_drop_leading_spaces(
                                reversed(positions))))

                    def _drop_double_spaces(positions):
                        def _drop_double_spaces_generator(positions):
                            last_was_space = False
                            for p in positions:
                                if p.chars[0].char == " ":
                                    if not last_was_space:
                                        yield p
                                    last_was_space = True
                                else:
                                    yield p
                                    last_was_space = False

                        return list(_drop_double_spaces_generator(positions))

                    positions = prediction.positions
                    positions = _drop_leading_spaces(positions)
                    positions = _drop_trailing_spaces(positions)
                    positions = _drop_double_spaces(positions)
                    positions = list(positions)

                    line_text = ''.join(
                        _sort_chars(p)[0].char for p in positions)
                    if line_text != prediction.sentence:
                        log.warning(
                            "Our own line text is not the same as Calamari's: '%s' != '%s'",
                            line_text, prediction.sentence)

                    # Delete existing results
                    if line.get_TextEquiv():
                        log.warning("Line '%s' already contained text results",
                                    line.id)
                    line.set_TextEquiv([])
                    if line.get_Word():
                        log.warning(
                            "Line '%s' already contained word segmentation",
                            line.id)
                    line.set_Word([])

                    # Save line results
                    line_conf = prediction.avg_char_probability
                    line.set_TextEquiv(
                        [TextEquivType(Unicode=line_text, conf=line_conf)])

                    # Save word results
                    #
                    # Calamari OCR does not provide word positions, so we infer word positions from a. text segmentation
                    # and b. the glyph positions. This is necessary because the PAGE XML format enforces a strict
                    # hierarchy of lines > words > glyphs.

                    def _words(s):
                        """Split words based on spaces and include spaces as 'words'"""
                        spaces = None
                        word = ''
                        for c in s:
                            if c == ' ' and spaces is True:
                                word += c
                            elif c != ' ' and spaces is False:
                                word += c
                            else:
                                if word:
                                    yield word
                                word = c
                                spaces = (c == ' ')
                        yield word

                    if self.parameter['textequiv_level'] in ['word', 'glyph']:
                        word_no = 0
                        i = 0

                        for word_text in _words(line_text):
                            word_length = len(word_text)
                            if not all(c == ' ' for c in word_text):
                                word_positions = positions[i:i + word_length]
                                word_start = word_positions[0].global_start
                                word_end = word_positions[-1].global_end

                                polygon = polygon_from_x0y0x1y1([
                                    word_start, 0, word_end, line_image.height
                                ])
                                points = points_from_polygon(
                                    coordinates_for_segment(
                                        polygon, None, line_coords))
                                # XXX Crop to line polygon?

                                word = WordType(id='%s_word%04d' %
                                                (line.id, word_no),
                                                Coords=CoordsType(points))
                                word.add_TextEquiv(
                                    TextEquivType(Unicode=word_text))

                                if self.parameter[
                                        'textequiv_level'] == 'glyph':
                                    for glyph_no, p in enumerate(
                                            word_positions):
                                        glyph_start = p.global_start
                                        glyph_end = p.global_end

                                        polygon = polygon_from_x0y0x1y1([
                                            glyph_start, 0, glyph_end,
                                            line_image.height
                                        ])
                                        points = points_from_polygon(
                                            coordinates_for_segment(
                                                polygon, None, line_coords))

                                        glyph = GlyphType(
                                            id='%s_glyph%04d' %
                                            (word.id, glyph_no),
                                            Coords=CoordsType(points))

                                        # Add predictions (= TextEquivs)
                                        char_index_start = 1  # Must start with 1, see https://ocr-d.github.io/page#multiple-textequivs
                                        for char_index, char in enumerate(
                                                _sort_chars(p),
                                                start=char_index_start):
                                            glyph.add_TextEquiv(
                                                TextEquivType(
                                                    Unicode=char.char,
                                                    index=char_index,
                                                    conf=char.probability))

                                        word.add_Glyph(glyph)

                                line.add_Word(word)
                                word_no += 1

                            i += word_length

            _page_update_higher_textequiv_levels('line', pcgts)

            # Add metadata about this operation and its runtime parameters:
            metadata = pcgts.get_Metadata()  # ensured by from_file()
            metadata.add_MetadataItem(
                MetadataItemType(
                    type_="processingStep",
                    name=self.ocrd_tool['steps'][0],
                    value=TOOL,
                    Labels=[
                        LabelsType(externalModel="ocrd-tool",
                                   externalId="parameters",
                                   Label=[
                                       LabelType(type_=name,
                                                 value=self.parameter[name])
                                       for name in self.parameter.keys()
                                   ])
                    ]))

            file_id = make_file_id(input_file, self.output_file_grp)
            pcgts.set_pcGtsId(file_id)
            self.workspace.add_file(ID=file_id,
                                    file_grp=self.output_file_grp,
                                    pageId=input_file.pageId,
                                    mimetype=MIMETYPE_PAGE,
                                    local_filename=os.path.join(
                                        self.output_file_grp,
                                        file_id + '.xml'),
                                    content=to_xml(pcgts))
コード例 #28
0
ファイル: crop.py プロジェクト: ucodai/ocrd_tesserocr
    def process(self):
        """Performs page cropping with Tesseract on the workspace.
        
        Open and deserialize PAGE input files and their respective images.
        Set up Tesseract to detect text blocks on each page, and find
        the largest coordinate extent spanning all of them. Use this
        extent in defining a Border, and add that to the page.
        
        Moreover, crop the original image accordingly, and reference the
        resulting image file as AlternativeImage in the Page element.
        
        Add the new image file to the workspace along with the output fileGrp,
        and using a file ID with suffix ``.IMG-CROP`` along with further
        identification of the input element.
        
        Produce new output files by serialising the resulting hierarchy.
        """
        LOG = getLogger('processor.TesserocrCrop')
        assert_file_grp_cardinality(self.input_file_grp, 1)
        assert_file_grp_cardinality(self.output_file_grp, 1)

        padding = self.parameter['padding']
        with tesserocr.PyTessBaseAPI(path=TESSDATA_PREFIX) as tessapi:
            # disable table detection here (tables count as text blocks),
            # because we do not want to risk confusing the spine with
            # a column separator and thus creeping into a neighbouring
            # page:
            tessapi.SetVariable("textord_tabfind_find_tables", "0")
            for (n, input_file) in enumerate(self.input_files):
                page_id = input_file.pageId or input_file.ID
                LOG.info("INPUT FILE %i / %s", n, page_id)
                pcgts = page_from_file(
                    self.workspace.download_file(input_file))
                self.add_metadata(pcgts)
                page = pcgts.get_Page()

                # warn of existing Border:
                border = page.get_Border()
                if border:
                    left, top, right, bottom = bbox_from_points(
                        border.get_Coords().points)
                    LOG.warning('Overwriting existing Border: %i:%i,%i:%i',
                                left, top, right, bottom)

                page_image, page_xywh, page_image_info = self.workspace.image_from_page(
                    page,
                    page_id,
                    # image must not have been cropped already,
                    # abort if no such image can be produced:
                    feature_filter='cropped')
                if self.parameter['dpi'] > 0:
                    dpi = self.parameter['dpi']
                    LOG.info(
                        "Page '%s' images will use %d DPI from parameter override",
                        page_id, dpi)
                elif page_image_info.resolution != 1:
                    dpi = page_image_info.resolution
                    if page_image_info.resolutionUnit == 'cm':
                        dpi = round(dpi * 2.54)
                    LOG.info(
                        "Page '%s' images will use %d DPI from image meta-data",
                        page_id, dpi)
                else:
                    dpi = 0
                    LOG.info(
                        "Page '%s' images will use DPI estimated from segmentation",
                        page_id)
                if dpi:
                    tessapi.SetVariable('user_defined_dpi', str(dpi))
                    zoom = 300 / dpi
                else:
                    zoom = 1

                # warn of existing segmentation:
                regions = page.get_TextRegion()
                if regions:
                    min_x = page_image.width
                    min_y = page_image.height
                    max_x = 0
                    max_y = 0
                    for region in regions:
                        left, top, right, bottom = bbox_from_points(
                            region.get_Coords().points)
                        min_x = min(min_x, left)
                        min_y = min(min_y, top)
                        max_x = max(max_x, right)
                        max_y = max(max_y, bottom)
                    LOG.warning(
                        'Ignoring extent from existing TextRegions: %i:%i,%i:%i',
                        min_x, max_x, min_y, max_y)

                LOG.debug("Cropping with Tesseract")
                tessapi.SetImage(page_image)
                # PSM.SPARSE_TEXT: get as much text as possible in no particular order
                # PSM.AUTO (default): includes tables (dangerous)
                tessapi.SetPageSegMode(tesserocr.PSM.SPARSE_TEXT)
                #
                # helper variables for saving the box coordinates
                #
                min_x = page_image.width
                min_y = page_image.height
                max_x = 0
                max_y = 0
                # iterate over all text blocks and compare their
                # bbox extent to the running min and max values
                for component in tessapi.GetComponentImages(
                        tesserocr.RIL.BLOCK, True):
                    image, xywh, index, _ = component
                    #
                    # the region reference in the reading order element
                    #
                    ID = "region%04d" % index
                    left, top, right, bottom = bbox_from_xywh(xywh)
                    LOG.debug("Detected text region '%s': %i:%i,%i:%i", ID,
                              left, right, top, bottom)
                    # filter region results:
                    bin_bbox = image.getbbox()
                    if not bin_bbox:
                        # this does happen!
                        LOG.info(
                            "Ignoring region '%s' because its binarization is empty",
                            ID)
                        continue
                    width = bin_bbox[2] - bin_bbox[0]
                    if width < 25 / zoom:
                        # we must be conservative here: page numbers are tiny regions, too!
                        LOG.info(
                            "Ignoring region '%s' because its width is too small (%d)",
                            ID, width)
                        continue
                    height = bin_bbox[3] - bin_bbox[1]
                    if height < 25 / zoom:
                        # we must be conservative here: page numbers are tiny regions, too!
                        LOG.debug(
                            "Ignoring region '%s' because its height is too small (%d)",
                            ID, height)
                        continue
                    min_x = min(min_x, left)
                    min_y = min(min_y, top)
                    max_x = max(max_x, right)
                    max_y = max(max_y, bottom)
                    LOG.info("Updated page border: %i:%i,%i:%i", min_x, max_x,
                             min_y, max_y)

                #
                # set the identified page border
                #
                if min_x < max_x and min_y < max_y:
                    # add padding:
                    min_x = max(min_x - padding, 0)
                    max_x = min(max_x + padding, page_image.width)
                    min_y = max(min_y - padding, 0)
                    max_y = min(max_y + padding, page_image.height)
                    LOG.info("Padded page border: %i:%i,%i:%i", min_x, max_x,
                             min_y, max_y)
                    polygon = polygon_from_bbox(min_x, min_y, max_x, max_y)
                    polygon = coordinates_for_segment(polygon, page_image,
                                                      page_xywh)
                    polygon = polygon_for_parent(polygon, page)
                    border = BorderType(
                        Coords=CoordsType(points_from_polygon(polygon)))
                    # intersection with parent could have changed bbox,
                    # so recalculate:
                    bbox = bbox_from_polygon(
                        coordinates_of_segment(border, page_image, page_xywh))
                    # update PAGE (annotate border):
                    page.set_Border(border)
                    # update METS (add the image file):
                    page_image = crop_image(page_image, box=bbox)
                    page_xywh['features'] += ',cropped'
                    file_id = make_file_id(input_file, self.output_file_grp)
                    file_path = self.workspace.save_image_file(
                        page_image,
                        file_id + '.IMG-CROP',
                        page_id=input_file.pageId,
                        file_grp=self.output_file_grp)
                    # update PAGE (reference the image file):
                    page.add_AlternativeImage(
                        AlternativeImageType(filename=file_path,
                                             comments=page_xywh['features']))
                else:
                    LOG.error("Cannot find valid extent for page '%s'",
                              page_id)

                pcgts.set_pcGtsId(file_id)
                self.workspace.add_file(ID=file_id,
                                        file_grp=self.output_file_grp,
                                        pageId=input_file.pageId,
                                        mimetype=MIMETYPE_PAGE,
                                        local_filename=os.path.join(
                                            self.output_file_grp,
                                            file_id + '.xml'),
                                        content=to_xml(pcgts))
コード例 #29
0
    def _process_segment(self, page_image, page, page_xywh, page_id,
                         input_file, n, mrcnn_model, class_names, mask):
        LOG = getLogger('OcrdAnybaseocrBlockSegmenter')
        # check for existing text regions and whether to overwrite them
        border = None
        if page.get_TextRegion():
            if self.parameter['overwrite']:
                LOG.info('removing existing TextRegions in page "%s"', page_id)
                page.set_TextRegion([])
            else:
                LOG.warning('keeping existing TextRegions in page "%s"',
                            page_id)
                return
        # check if border exists
        if page.get_Border():
            border_coords = page.get_Border().get_Coords()
            border_points = polygon_from_points(border_coords.get_points())
            border = Polygon(border_points)


#            page_image, page_xy = self.workspace.image_from_segment(page.get_Border(), page_image, page_xywh)

        img_array = ocrolib.pil2array(page_image)
        page_image.save('./checkthis.png')
        if len(img_array.shape) <= 2:
            img_array = np.stack((img_array, ) * 3, axis=-1)
        results = mrcnn_model.detect([img_array], verbose=1)
        r = results[0]

        th = self.parameter['th']
        # check for existing semgentation mask
        # this code executes only when use_deeplr is set to True in ocrd-tool.json file
        if mask:
            mask = ocrolib.pil2array(mask)
            mask = mask // 255
            mask = 1 - mask
            # multiply all the bounding box part with 2
            for i in range(len(r['rois'])):

                min_x = r['rois'][i][0]
                min_y = r['rois'][i][1]
                max_x = r['rois'][i][2]
                max_y = r['rois'][i][3]
                mask[min_x:max_x, min_y:max_y] *= i + 2
            cv2.imwrite('mask_check.png', mask * (255 / (len(r['rois']) + 2)))

            # check for left over pixels and add them to the bounding boxes
            pixel_added = True

            while pixel_added:

                pixel_added = False
                left_over = np.where(mask == 1)
                for x, y in zip(left_over[0], left_over[1]):
                    local_mask = mask[x - th:x + th, y - th:y + th]
                    candidates = np.where(local_mask > 1)
                    candidates = [k for k in zip(candidates[0], candidates[1])]
                    if len(candidates) > 0:
                        pixel_added = True
                        # find closest pixel with x>1
                        candidates.sort(key=lambda j: np.sqrt((j[0] - th)**2 +
                                                              (j[1] - th)**2))
                        index = local_mask[candidates[0]] - 2

                        # add pixel to mask/bbox
                        # x,y to bbox with index
                        if x < r['rois'][index][0]:
                            r['rois'][index][0] = x

                        elif x > r['rois'][index][2]:
                            r['rois'][index][2] = x

                        if y < r['rois'][index][1]:
                            r['rois'][index][1] = y

                        elif y > r['rois'][index][3]:
                            r['rois'][index][3] = y

                        # update the mask
                        mask[x, y] = index + 2

        # resolving overlapping problem
        bbox_dict = {}  # to check any overlapping bbox
        class_id_check = []

        for i in range(len(r['rois'])):
            min_x = r['rois'][i][0]
            min_y = r['rois'][i][1]
            max_x = r['rois'][i][2]
            max_y = r['rois'][i][3]

            region_bbox = [min_y, min_x, max_y, max_x]

            for key in bbox_dict:
                for bbox in bbox_dict[key]:

                    # checking for ymax case with vertical overlapping
                    # along with y, check both for xmax and xmin
                    if (region_bbox[3] <= bbox[3] and region_bbox[3] >= bbox[1]
                            and ((region_bbox[0] >= bbox[0]
                                  and region_bbox[0] <= bbox[2]) or
                                 (region_bbox[2] >= bbox[0]
                                  and region_bbox[2] <= bbox[2]) or
                                 (region_bbox[0] <= bbox[0]
                                  and region_bbox[2] >= bbox[2]))
                            and r['class_ids'][i] != 5):

                        r['rois'][i][2] = bbox[1] - 1

                    # checking for ymin now
                    # along with y, check both for xmax and xmin
                    if (region_bbox[1] <= bbox[3] and region_bbox[1] >= bbox[1]
                            and ((region_bbox[0] >= bbox[0]
                                  and region_bbox[0] <= bbox[2]) or
                                 (region_bbox[2] >= bbox[0]
                                  and region_bbox[2] <= bbox[2]) or
                                 (region_bbox[0] <= bbox[0]
                                  and region_bbox[2] >= bbox[2]))
                            and r['class_ids'][i] != 5):

                        r['rois'][i][0] = bbox[3] + 1

            if r['class_ids'][i] not in class_id_check:
                bbox_dict[r['class_ids'][i]] = []
                class_id_check.append(r['class_ids'][i])

            bbox_dict[r['class_ids'][i]].append(region_bbox)

        # resolving overlapping problem code

        # define reading order on basis of coordinates
        reading_order = []

        for i in range(len(r['rois'])):
            width, height, _ = img_array.shape
            min_x = r['rois'][i][0]
            min_y = r['rois'][i][1]
            max_x = r['rois'][i][2]
            max_y = r['rois'][i][3]

            if (min_y - 5) > width and r['class_ids'][i] == 2:
                min_y -= 5
            if (max_y + 10) < width and r['class_ids'][i] == 2:
                min_y += 10
            reading_order.append((min_y, min_x, max_y, max_x))

        reading_order = sorted(reading_order,
                               key=lambda reading_order:
                               (reading_order[1], reading_order[0]))
        for i in range(len(reading_order)):
            min_y, min_x, max_y, max_x = reading_order[i]
            min_y = 0
            i_poly = Polygon([[min_x, min_y], [max_x, min_y], [max_x, max_y],
                              [min_x, max_y]])
            for j in range(i + 1, len(reading_order)):
                min_y, min_x, max_y, max_x = reading_order[j]
                j_poly = Polygon([[min_x, min_y], [max_x, min_y],
                                  [max_x, max_y], [min_x, max_y]])
                inter = i_poly.intersection(j_poly)
                if inter:
                    reading_order.insert(j + 1, reading_order[i])
                    del reading_order[i]

        # Creating Reading Order object in PageXML
        order_group = OrderedGroupType(caption="Regions reading order",
                                       id=page_id)

        for i in range(len(r['rois'])):
            min_x = r['rois'][i][0]
            min_y = r['rois'][i][1]
            max_x = r['rois'][i][2]
            max_y = r['rois'][i][3]
            if (min_y - 5) > width and r['class_ids'][i] == 2:
                min_y -= 5
            if (max_y + 10) < width and r['class_ids'][i] == 2:
                min_y += 10

            region_polygon = [[min_x, min_y], [max_x, min_y], [max_x, max_y],
                              [min_x, max_y]]

            if border:
                cut_region_polygon = border.intersection(
                    Polygon(region_polygon))
                if cut_region_polygon.is_empty:
                    continue
            else:
                cut_region_polygon = Polygon(region_polygon)

            order_index = reading_order.index((min_y, min_x, max_y, max_x))
            region_id = '%s_region%04d' % (page_id, i)
            regionRefIndex = RegionRefIndexedType(index=order_index,
                                                  regionRef=region_id)
            order_group.add_RegionRefIndexed(regionRefIndex)

        reading_order_object = ReadingOrderType()
        reading_order_object.set_OrderedGroup(order_group)
        page.set_ReadingOrder(reading_order_object)

        for i in range(len(r['rois'])):
            width, height, _ = img_array.shape
            min_x = r['rois'][i][0]
            min_y = r['rois'][i][1]
            max_x = r['rois'][i][2]
            max_y = r['rois'][i][3]

            if (min_y - 5) > width and r['class_ids'][i] == 2:
                min_y -= 5
            if (max_y + 10) < width and r['class_ids'][i] == 2:
                min_y += 10

            # one change here to resolve flipped coordinates
            region_polygon = [[min_y, min_x], [max_y, min_x], [max_y, max_x],
                              [min_y, max_x]]

            cut_region_polygon = border.intersection(Polygon(region_polygon))

            if cut_region_polygon.is_empty:
                continue
            cut_region_polygon = [
                j for j in zip(list(cut_region_polygon.exterior.coords.xy[0]),
                               list(cut_region_polygon.exterior.coords.xy[1]))
            ][:-1]

            # checking whether coordinates are flipped

            region_polygon = coordinates_for_segment(cut_region_polygon,
                                                     page_image, page_xywh)
            region_points = points_from_polygon(region_polygon)

            read_order = reading_order.index((min_y, min_x, max_y, max_x))

            # this can be tested, provided whether we need previous comments or not?
            # resolving overlapping problem

            region_img = img_array[min_x:max_x, min_y:
                                   max_y]  # extract from points and img_array

            region_img = ocrolib.array2pil(region_img)

            file_id = make_file_id(input_file, self.output_file_grp)
            file_path = self.workspace.save_image_file(
                region_img,
                file_id + "_" + str(i),
                page_id=page_id,
                file_grp=self.output_file_grp)

            # ai = AlternativeImageType(filename=file_path, comments=page_xywh['features'])
            region_id = '%s_region%04d' % (page_id, i)
            coords = CoordsType(region_points)

            # incase of imageRegion
            if r['class_ids'][i] == 15:
                image_region = ImageRegionType(
                    custom='readingOrder {index:' + str(read_order) + ';}',
                    id=region_id,
                    Coords=coords,
                    type_=class_names[r['class_ids'][i]])
                # image_region.add_AlternativeImage(ai)
                page.add_ImageRegion(image_region)
                continue
            if r['class_ids'][i] == 16:
                table_region = TableRegionType(
                    custom='readingOrder {index:' + str(read_order) + ';}',
                    id=region_id,
                    Coords=coords,
                    type_=class_names[r['class_ids'][i]])
                # table_region.add_AlternativeImage(ai)
                page.add_TableRegion(table_region)
                continue
            if r['class_ids'][i] == 17:
                graphic_region = GraphicRegionType(
                    custom='readingOrder {index:' + str(read_order) + ';}',
                    id=region_id,
                    Coords=coords,
                    type_=class_names[r['class_ids'][i]])
                # graphic_region.add_AlternativeImage(ai)
                page.add_GraphicRegion(graphic_region)
                continue

            textregion = TextRegionType(custom='readingOrder {index:' +
                                        str(read_order) + ';}',
                                        id=region_id,
                                        Coords=coords,
                                        type_=class_names[r['class_ids'][i]])
            # textregion.add_AlternativeImage(ai)

            #border = page.get_Border()
            # if border:
            #    border.add_TextRegion(textregion)
            # else:
            page.add_TextRegion(textregion)
コード例 #30
0
    def _process_segment(self, page_image, page, textregion, region_xywh,
                         page_id, input_file, n):
        LOG = getLogger('OcrdAnybaseocrTextline')
        #check for existing text lines and whether to overwrite them
        if textregion.get_TextLine():
            if self.parameter['overwrite']:
                LOG.info('removing existing TextLines in region "%s"', page_id)
                textregion.set_TextLine([])
            else:
                LOG.warning('keeping existing TextLines in region "%s"',
                            page_id)
                return

        binary = ocrolib.pil2array(page_image)

        if len(binary.shape) > 2:
            binary = np.mean(binary, 2)
        binary = np.array(1 - binary / np.amax(binary), 'B')

        if self.parameter['scale'] == 0:
            scale = psegutils.estimate_scale(binary)
        else:
            scale = self.parameter['scale']

        if np.isnan(
                scale) or scale > 1000.0 or scale < self.parameter['minscale']:
            LOG.warning(str(scale) + ": bad scale; skipping!\n")
            return

        segmentation = self.compute_segmentation(binary, scale)
        if np.amax(segmentation) > self.parameter['maxlines']:
            LOG.warning("too many lines %i; skipping!\n",
                        (np.amax(segmentation)))
            return
        lines = psegutils.compute_lines(segmentation, scale)
        order = psegutils.reading_order([l.bounds for l in lines])
        lsort = psegutils.topsort(order)

        # renumber the labels so that they conform to the specs

        nlabels = np.amax(segmentation) + 1
        renumber = np.zeros(nlabels, 'i')
        for i, v in enumerate(lsort):
            renumber[lines[v].label] = 0x010000 + (i + 1)
        segmentation = renumber[segmentation]

        lines = [lines[i] for i in lsort]
        cleaned = ocrolib.remove_noise(binary, self.parameter['noise'])

        for i, l in enumerate(lines):
            #LOG.info('check this: ')
            #LOG.info(type(l.bounds))
            #LOG.info(l.bounds)
            #line_points = np.where(l.mask==1)
            #hull = MultiPoint([x for x in zip(line_points[0],line_points[1])]).convex_hull
            #x,y = hull.exterior.coords.xy
            #LOG.info('hull coords x: ',x)
            #LOG.info('hull coords y: ',y)

            min_x, max_x = (l.bounds[0].start, l.bounds[0].stop)
            min_y, max_y = (l.bounds[1].start, l.bounds[1].stop)

            line_polygon = [[min_x, min_y], [max_x, min_y], [max_x, max_y],
                            [min_x, max_y]]

            #line_polygon = [x for x in zip(y, x)]
            line_polygon = coordinates_for_segment(line_polygon, page_image,
                                                   region_xywh)
            line_points = points_from_polygon(line_polygon)

            img = cleaned[l.bounds[0], l.bounds[1]]
            img = np.array(255 * (img > ocrolib.midrange(img)), 'B')
            img = 255 - img
            img = ocrolib.array2pil(img)

            file_id = make_file_id(input_file, self.output_file_grp)
            file_path = self.workspace.save_image_file(
                img,
                file_id + "_" + str(n) + "_" + str(i),
                page_id=page_id,
                file_grp=self.output_file_grp)
            ai = AlternativeImageType(filename=file_path,
                                      comments=region_xywh['features'])
            line_id = '%s_line%04d' % (page_id, i)
            line = TextLineType(custom='readingOrder {index:' + str(i) + ';}',
                                id=line_id,
                                Coords=CoordsType(line_points))
            line.add_AlternativeImage(ai)
            textregion.add_TextLine(line)