コード例 #1
0
ファイル: test.py プロジェクト: shyisme/data-anasys
def simulite(k, fy):

    t_euler, x_euler = ode.euler(
        dfun=fy,
        xzero=k,
        timerange=t_range,
        timestep=t_step,
    )
    return x_euler
コード例 #2
0
ファイル: falling_body.py プロジェクト: McKizzle/CSCI-577
def main():
    t_0 = 0
    y_0 = 10.0 # m
    v_0 = 0.0  # m/s
    sim_d = [np.array([t_0, v_0, y_0])] #t,v,x
    sim_d_energy = [fall_energy(y_0, v_0)]
    sim_a = [np.array([t_0, fall_analytic_velocity(t_0), fall_analytic(t_0, y_0)])] # t,v,x
    sim_a_energy = [fall_energy(fall_analytic(t_0, y_0), fall_analytic_velocity(t_0))]
    
    #print sim_d
    #print sim_d[0]
    #print sim_d[0][1:3]

    # Run the simuation for about two seconds.
    dt = 0.05 # step size
    t_max = 1.5 # maximum number of seconds to run. 
    dt_steps = int(t_max / dt) #number of dt increments to perform
    y_p = 10
    for step in range(1, dt_steps + 1):
        t = step * dt + t_0
        tp1 = np.array([t])
        sim_d.append(np.append(tp1, ode.euler(fall, sim_d[step - 1][1:3], dt, t)))
        sim_d_energy.append(fall_energy(sim_d[step][2], sim_d[step][1]))
        sim_a.append(np.append(tp1, [fall_analytic_velocity(t), fall_analytic(t, y_0)]))
        sim_a_energy.append(fall_energy(sim_a[step][2], sim_a[step][1]))
        

    #Plot the falling objects. Euler vs Analytical functions.
    sim_d = np.array(sim_d)
    sim_a = np.array(sim_a)
    y, = plt.plot(sim_d[:,0], sim_d[:,2], "r")
    y_anal, = plt.plot(sim_a[:,0], sim_a[:,2], "b")
    plt.legend([y, y_anal], ["Height", "Analytical Height"])
    plt.title("Position Comparison of the Analytical and Euler Systems")
    plt.xlabel("Time (sec)")
    plt.ylabel("Height (m)")
    plt.show()

    #Plot the energies of the two curves.
    e_plot_d, = plt.plot(sim_d[:,0], sim_d_energy, "r")
    e_plot_a, = plt.plot(sim_a[:,0], sim_a_energy, "b")
    plt.legend([e_plot_d, e_plot_a], ["Energy in discrete simulation", "Energy in analytical simulation"])
    plt.title("Energy Comparison of the Analytical and Euler Systems")
    plt.xlabel("Time (sec)")
    plt.ylabel("Energy")
    plt.ylim([97, 102])
    plt.show()

    #Calculate the energy difference
    e_diff = abs(sim_a_energy[len(sim_a_energy) - 1] - sim_d_energy[len(sim_d_energy) - 1])
    print "Energy difference is %0.2fJ" % e_diff

    return 0
コード例 #3
0
ファイル: test_ode.py プロジェクト: bierschenk/ode
def test_Euler():
    t_test = [round(x, 6) for x in oscillator_euler_t]
    p_test = [round(x, 6) for x in oscillator_euler_x1]
    v_test = [round(x, 6) for x in oscillator_euler_x2]
    t_euler_raw, x_euler_raw = ode.euler(oscillator_1st_deriv,
                                         xzero=[0, 1],
                                         timerange=[0, 5],
                                         timestep=0.1)
    p_euler_raw, v_euler_raw = x_euler_raw
    t_euler = [round(x, 6) for x in t_euler_raw]
    p_euler = [round(x, 6) for x in p_euler_raw]
    v_euler = [round(x, 6) for x in v_euler_raw]
    assert (t_test, p_test, v_test) == (t_euler, p_euler, v_euler)
コード例 #4
0
def run_example_composite_simpson():
    print("\n\n[Example] ODE: Euler")

    def f(x, y):
        return y - x ** 2 + 1

    a = 0.0
    b = 2.0
    n = 10
    ya = 0.5
    print_var("a", a)
    print_var("b", b)
    print_var("n", n)
    print_var("ya", ya)
    [vx, vy] = ode.euler(f, a, b, n, ya)
    print_var("vx", vx)
    print_var("vy", vy)
コード例 #5
0
ファイル: test_ode.py プロジェクト: bierschenk/ode
def test_euler():
    t_euler_raw, x_euler_raw = ode.euler(oscillator_1st_deriv,
                                         xzero=[0, 1],
                                         timerange=[0, 5],
                                         timestep=0.1)
    p_euler_raw, v_euler_raw = x_euler_raw
    t_euler = [round(x, 6) for x in t_euler_raw]
    p_euler = [round(x, 6) for x in p_euler_raw]
    v_euler = [round(x, 6) for x in v_euler_raw]
    t_ieuler_raw, x_ieuler_raw = zip(*list(
        ode.Euler(
            oscillator_1st_deriv, xzero=[0, 1], timerange=[0, 5
                                                           ], timestep=0.1)))
    p_ieuler_raw, v_ieuler_raw = zip(*x_ieuler_raw)
    t_ieuler = [round(x, 6) for x in t_ieuler_raw]
    p_ieuler = [round(x, 6) for x in p_ieuler_raw]
    v_ieuler = [round(x, 6) for x in v_ieuler_raw]
    assert (t_euler, p_euler, v_euler) == (t_ieuler, p_ieuler, v_ieuler)
コード例 #6
0
def main():
    tn = np.linspace(0.0, 2.0, 5)  # Grid
    y0 = np.array([0.5])  # Initial condition
    y_ef = ode.euler(fun, tn, y0)  # Forward Euler
    y_mp = ode.midpoint(fun, tn, y0)  # Explicit Midpoint
    y_rk = ode.rk4(fun, tn, y0)  # Runge-Kutta 4
    y_an = tn**2 + 2.0 * tn + 1.0 - 0.5 * np.exp(tn)  # Analytical

    plt.figure(1)
    plt.plot(tn, y_ef, 'ro-', label='Forward Euler (1st)')
    plt.plot(tn, y_mp, 'go-', label='Explicit Mid-Point (2nd)')
    plt.plot(tn, y_rk, 'bx-', label='Runge-Kutta (4th)')
    plt.plot(tn, y_an, 'k-', label='Analytical Solution')
    plt.xlabel('t')
    plt.ylabel('y')
    plt.legend(loc=2)
    plt.savefig('ex01_ode_solution.png')
    plt.show()
コード例 #7
0
def run_example_composite_simpson():
    """Run an example 'ODE: Euler'."""
    print_func_docstring()

    def f(x, y):
        return y - x**2 + 1

    a = 0.0
    b = 2.0
    n = 10
    ya = 0.5
    print_var("a", a)
    print_var("b", b)
    print_var("n", n)
    print_var("ya", ya)
    [vx, vy] = ode.euler(f, a, b, n, ya)
    print_var("vx", vx)
    print_var("vy", vy)
コード例 #8
0
ファイル: ex02_ode.py プロジェクト: xztan2/PlasmaEDU
def main():
    xn = np.linspace(0.0, 5.0, 20)  # Grid
    y0 = np.array([0.5])  # Initial condition
    y_ef = ode.euler(fun, xn, y0)  # Forward Euler
    y_mp = ode.midpoint(fun, xn, y0)  # Explicit Midpoint
    y_rk = ode.rk4(fun, xn, y0)  # Runge-Kutta 4
    y_an = xn**2 + 2.0 * xn + 1.0 - 0.5 * np.exp(xn)  # Analytical

    for i in range(0, xn.size):
        print xn[i], y_an[i], y_ef[i, 0], y_mp[i, 0], y_rk[i, 0]

    plt.figure(1)
    plt.plot(xn, y_ef, 'ro-', label='Forward Euler (1st)')
    plt.plot(xn, y_mp, 'go-', label='Explicit Mid-Point (2nd)')
    plt.plot(xn, y_rk, 'bx-', label='Runge-Kutta (4th)')
    plt.plot(xn, y_an, 'k-', label='Analytical Solution')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.legend(loc=3)
    plt.savefig('ex02_ode_solution.png')
    plt.show()
コード例 #9
0
ファイル: ex01_drift_ExB.py プロジェクト: xztan2/PlasmaEDU
def main():
    # Grid
    time = np.linspace(0.0, 1.1e-6, 100)
    # Initial conditions
    X0 = np.array((0.0, 0.0, 0.0, 0.0, 1.0e6, 0.0))
    # Solve ODE
    X_ef = ode.euler(fun, time, X0)  # Forward Euler
    X_mp = ode.midpoint(fun, time, X0)  # Explicit Midpoint
    X_rk = ode.rk4(fun, time, X0)  # Runge-Kutta 4

    # for i in range(0,xn.size):
    #     print xn[i], y_an[i], y_ef[i,0], y_mp[i,0], y_rk[i,0]

    plt.figure(1)
    plt.plot(X_ef[:, 0], X_ef[:, 1], 'ro-', label='Forward Euler (1st)')
    plt.plot(X_mp[:, 0], X_mp[:, 1], 'go-', label='Explicit Mid-Point (2nd)')
    plt.plot(X_rk[:, 0], X_rk[:, 1], 'bx-', label='Runge-Kutta (4th)')
    plt.xlabel('x [m]')
    plt.ylabel('y [m]')
    plt.axis('equal')
    plt.legend(loc=3)
    plt.savefig('ex01_particle_ExB.png')
    plt.show()
コード例 #10
0
ファイル: sde.py プロジェクト: myuuuuun/Algorithms
    analytic solution of
        x'(t) = x(2-x) dt, x(0) = 1
    is x(t) = 2*exp(2t) / (1 + exp(2t))
    """

    func = lambda x: 2 * x - x**2
    init = 1
    t_start = 0
    step = 0.01
    repeat = 200
    seed = 198

    ts = np.arange(t_start, step * repeat, step)
    analytic_path = 2 * np.exp(2 * ts) / (1 + np.exp(2 * ts))
    approx_path = ode.euler(func, init, t_start, step, repeat)

    sample_size = 100

    # Euler Method
    rs = np.random.RandomState(seed)
    random_coef = lambda x: x
    random_process = lambda x, step: rs.normal(loc=0, scale=math.sqrt(step))

    euler_path = np.zeros((sample_size, repeat))
    for i in range(sample_size):
        euler_path[i] = sde_euler(func, init, t_start, step, repeat,
                                  random_coef, random_process)[1]

    euler_average = np.zeros(repeat)
    for i in range(repeat):
コード例 #11
0
ファイル: sde.py プロジェクト: myuuuuun/Algorithms
    analytic solution of
        x'(t) = x(2-x) dt, x(0) = 1
    is x(t) = 2*exp(2t) / (1 + exp(2t))
    """

    func = lambda x: 2*x - x**2
    init = 1
    t_start = 0
    step = 0.01
    repeat = 200
    seed = 198

    ts = np.arange(t_start, step*repeat, step)
    analytic_path = 2*np.exp(2*ts) / (1 + np.exp(2*ts))
    approx_path = ode.euler(func, init, t_start, step, repeat)

    sample_size = 100

    # Euler Method
    rs = np.random.RandomState(seed)
    random_coef = lambda x: x
    random_process = lambda x, step: rs.normal(loc=0, scale=math.sqrt(step))

    euler_path = np.zeros((sample_size, repeat))
    for i in range(sample_size):
        euler_path[i] = sde_euler(func, init, t_start, step, repeat, random_coef, random_process)[1]
    
    euler_average = np.zeros(repeat)
    for i in range(repeat):
        euler_average[i] = euler_path[:, i].mean()
コード例 #12
0
def main():

    # Initial velocity [m/s]
    vy0 = 1.0e6
    # Larmor pulsation [rad/s]
    w_L = qe / me * B0
    # Larmor period [s]
    tau_L = 2.0 * np.pi / w_L
    # Larmor radius [m]
    r_L = vy0 / w_L

    # Initial conditions
    y0 = np.array((r_L, 0.0, 0.0, 0.0, vy0, 0.0))

    # Euler Forward
    time_ef = np.linspace(0.0, tau_L, 10)
    y_ef = ode.euler(fun, time_ef, y0)

    # Explicit Midpoint
    time_mp = np.linspace(0.0, tau_L, 10)
    y_mp = ode.midpoint(fun, time_mp, y0)

    # Runge-Kutta 4
    time_rk = np.linspace(0.0, tau_L, 10)
    y_rk = ode.rk4(fun, time_rk, y0)

    # Amplitude (orbit radius)
    r_ef = np.sqrt(y_ef[:, 0]**2 + y_ef[:, 1]**2)
    r_mp = np.sqrt(y_mp[:, 0]**2 + y_mp[:, 1]**2)
    r_rk = np.sqrt(y_rk[:, 0]**2 + y_rk[:, 1]**2)

    # Plot 1 - Trajectory
    plt.figure(1)
    plt.plot(y_ef[:, 0], y_ef[:, 1], 'ro-', label='Euler-Forward (1st)')
    plt.plot(y_mp[:, 0], y_mp[:, 1], 'go-', label='Explicit Mid-Point (2nd)')
    plt.plot(y_rk[:, 0], y_rk[:, 1], 'bx-', label='Runge-Kutta (4th)')
    plt.axis('equal')
    plt.xlabel('x [m]')
    plt.ylabel('y [m]')
    plt.title('One Larmor Gyration')
    plt.legend(loc=3)
    plt.savefig('ex03_ode_larmor_trajectory.png')

    # Plot 2 - Amplitude percent error
    plt.figure(2)
    plt.plot(time_ef / tau_L,
             ode.error_percent(r_L, r_ef),
             'ro',
             label='Forward Euler (1st)')
    plt.plot(time_mp / tau_L,
             ode.error_percent(r_L, r_mp),
             'go',
             label='MidPoint (2nd)')
    plt.plot(time_rk / tau_L,
             ode.error_percent(r_L, r_rk),
             'bx',
             label='Runge-Kutta (4th)')
    plt.xlabel('time / tau_Larmor')
    plt.ylabel('Percent Amplitude error [%]')
    plt.title('Percent Amplitude Error over 1 Larmor gyration ')
    plt.legend(loc=2)
    plt.savefig('ex03_ode_larmor_error.png')
    plt.show()
コード例 #13
0
debug("b")
debug("n")
[xi] = integration.composite_simpson(f, b, a, n)
debug("xi")

print_running("ODE: Euler method")
f = lambda x, y: y - x**2 + 1
a = 0.0
b = 2.0
n = 10
ya = 0.5
debug("a")
debug("b")
debug("n")
debug("ya")
[vx, vy] = ode.euler(f, a, b, n, ya)
debug("vx")
debug("vy")

print_running("ODE: Taylor (Order Two) method")
f = lambda x, y: y - x**2 + 1
df1 = lambda x, y: y - x**2 + 1 - 2 * x
a = 0.0
b = 2.0
n = 10
ya = 0.5
debug("a")
debug("b")
debug("n")
debug("ya")
[vx, vy] = ode.taylor2(f, df1, a, b, n, ya)
コード例 #14
0
ファイル: test.py プロジェクト: shyisme/data-anasys
    return dX


solve = [[0, 1, 0], [1, 1, 0], [0, 1, 1], [1, 1, 1],
         [1, j_0 * v / (j_0 * w + c + e - h), 1],
         [0, -i_0 * v / (-i_0 * w + h), 0], [0, -j_0 * v / (-j_0 * w + h), 1]]
solve_modify = [[0, 1, 0], [1, 1, 0], [0, w * v * i_0 / h, 0], [0, 1, 1],
                [0, w * v * j_0 / h, 1], [1, 1, 1]]

dt = 0.1
t_range = [0, 3]
t_step = 0.001
X_0 = [0.96, 1, 1]
t_euler, x_euler = ode.euler(
    dfun=fy,
    xzero=X_0,
    timerange=t_range,
    timestep=t_step,
)
X = np.array(x_euler)
T = np.array(t_euler)
variable = [
    'The ratio of government regulators to monitoring',
    'The ratio of total contracting to safe investmentratio state safety of supervise',
    'ratio state safety of supervise'
]


def simulite(k, fy):

    t_euler, x_euler = ode.euler(
        dfun=fy,