コード例 #1
0
 def solve_ode(self, l):
     """Solves the Schrodinger equation for a given l value using the Numerov method
     in the ode module.
     
     Arguments:
        l: angular momentum number
     Returns:
        points: set of points containing the solution to the Schrodinger equation
     """
     
     if self.verbose:
         print("Calculating points...")
     
     # Set up initial conditions
     # We can't start at r=0, because the centrifugal term will diverge. Instead,
     # we use the central difference formula for the second derivative and X(0)=0
     # to write an (worse) approximation for the third point.
     points = np.zeros_like(self.rgrid)
     points[1] = 1/self.stepsize # This is an arbitrary -- it sets the normalization.
     points[2] = points[1] * (2 - self.schrod_eqn(self.rgrid[1],l)*(self.stepsize**2))
     
     points = ode.numerov(self.schrod_eqn, x_grid = self.rgrid, y_grid=points,
                          start_index=1, end_index = self.xn,
                          verbose=self.verbose, l=l)
     return points
コード例 #2
0
    def solve_ode(self, l):
        """Solves the Schrodinger equation for a given l value using the Numerov method
        in the ode module.
        
        Arguments:
           l: angular momentum number
        Returns:
           points: set of points containing the solution to the Schrodinger equation
        """

        if self.verbose:
            print("Calculating points...")

        # Set up initial conditions
        # We can't start at r=0, because the centrifugal term will diverge. Instead,
        # we use the central difference formula for the second derivative and X(0)=0
        # to write an (worse) approximation for the third point.
        points = np.zeros_like(self.rgrid)
        points[
            1] = 1 / self.stepsize  # This is an arbitrary -- it sets the normalization.
        points[2] = points[1] * (2 - self.schrod_eqn(self.rgrid[1], l) *
                                 (self.stepsize**2))

        points = ode.numerov(self.schrod_eqn,
                             x_grid=self.rgrid,
                             y_grid=points,
                             start_index=1,
                             end_index=self.xn,
                             verbose=self.verbose,
                             l=l)
        return points
コード例 #3
0
    def solve_ode(self, E, direction=None, endpoint=None):
        """Solves the Schrodinger equation using the Numerov method.

        Arguments:
           E: energy
           direction: which way the solver works
           endpoint: sets a particular stopping point
        Returns:
           points: solution to differential equation
        """

        if endpoint is None:
            endpoint = self.turnpoint_index

        if direction is None:
            # If a direction isn't specified, recurse downward and integrate
            # left and right sides.
            l_points = self.solve_ode(E, direction='right', endpoint=endpoint)
            r_points = self.solve_ode(E, direction='left', endpoint=endpoint)
            points = np.zeros_like(self.xgrid)
            points[:endpoint] = l_points[:endpoint]
            points[endpoint:] = r_points[endpoint:] * (l_points[endpoint] /
                                                       r_points[endpoint])

            points = self.normalize(points)
            return points

        if self.verbose:
            print("Calculating points...")

        points = ode.numerov(self.schrod_eqn,
                             i0=0,
                             i_slope=-1,
                             x_grid=self.xgrid,
                             direction=direction,
                             end_index=endpoint,
                             verbose=self.verbose,
                             E=E)
        # Convert back from y(x) to chi(x)
        return points * np.sqrt(self.rgrid)
コード例 #4
0
    def solve_ode(self, E, direction=None, endpoint=None):
        """Solves the Schrodinger equation using the Numerov method.

        Arguments:
           E: energy
           direction: which way the solver works
           endpoint: sets a particular stopping point
        Returns:
           points: solution to differential equation
        """

        if endpoint is None:
            endpoint = self.turnpoint_index
        
        if direction is None:
            # If a direction isn't specified, recurse downward and integrate
            # left and right sides.
            l_points = self.solve_ode(E, direction='right', endpoint=endpoint)
            r_points = self.solve_ode(E, direction='left', endpoint=endpoint)
            points = np.zeros_like(self.xgrid)
            points[:endpoint] = l_points[:endpoint] 
            points[endpoint:] = r_points[endpoint:] * (l_points[endpoint]/r_points[endpoint])
            
            points = self.normalize(points)
            return points
        
        
        if self.verbose:
            print("Calculating points...")
        
        points = ode.numerov(self.schrod_eqn, i0 = 0, i_slope = -1,
                                   x_grid = self.xgrid,
                                   direction = direction,
                                   end_index = endpoint,verbose=self.verbose, E=E)
        # Convert back from y(x) to chi(x)
        return points*np.sqrt(self.rgrid)
コード例 #5
0
import ode
import numpy as np
import matplotlib.pylab as pylab

grid = np.linspace(0,2*np.pi,100)

def g(x):
    return np.ones_like(x)

res = ode.numerov(g,0.,1.,grid,end_index=50)

pylab.plot(grid,res)
#pylab.plot(grid,np.sin(grid))
#pylab.show()

res = ode.numerov(g,0.,1.,grid,end_index=50,direction='left')
pylab.plot(grid,res)
#pylab.plot(grid,np.sin(grid))
pylab.show()
コード例 #6
0
ファイル: Program_12.2_qmscatt.py プロジェクト: com-py/compy
def wf(M, xm):                  # find w.f. and deriv at xm
    c = (h*h)/6.
    wfup, nup = ode.numerov(f, [0,.1], M, xL, h)    # 1 step past xm
    dup = ((1+c*f(xm+h))*wfup[-1] - (1+c*f(xm-h))*wfup[-3])/(h+h)
    return wfup, dup/wfup[-2]
コード例 #7
0
def wf(M, xm):  # find w.f. and deriv at xm
    c = (h * h) / 6.
    wfup, nup = ode.numerov(f, [0, .1], M, xL, h)  # 1 step past xm
    dup = ((1 + c * f(xm + h)) * wfup[-1] -
           (1 + c * f(xm - h)) * wfup[-3]) / (h + h)
    return wfup, dup / wfup[-2]
コード例 #8
0
import ode
import numpy as np
import matplotlib.pylab as pylab

grid = np.linspace(0, 2 * np.pi, 100)


def g(x):
    return np.ones_like(x)


res = ode.numerov(g, 0., 1., grid, end_index=50)

pylab.plot(grid, res)
#pylab.plot(grid,np.sin(grid))
#pylab.show()

res = ode.numerov(g, 0., 1., grid, end_index=50, direction='left')
pylab.plot(grid, res)
#pylab.plot(grid,np.sin(grid))
pylab.show()
コード例 #9
0
import ode
import numpy as np
import matplotlib.pylab as pylab

grid = np.linspace(1,10,100)

def g(x):
    return 1/x

res = ode.numerov(g,0.,1.,grid)

pylab.plot(grid,res)
#pylab.plot(grid,np.sin(grid))
#pylab.show()

res = ode.numerov(g,-1.62827,-0.319947,grid,direction='left')
pylab.plot(grid,res)
#pylab.plot(grid,np.sin(grid))
pylab.show()
コード例 #10
0
import ode
import numpy as np
import matplotlib.pylab as pylab

grid = np.linspace(1, 10, 100)


def g(x):
    return 1 / x


res = ode.numerov(g, 0., 1., grid)

pylab.plot(grid, res)
#pylab.plot(grid,np.sin(grid))
#pylab.show()

res = ode.numerov(g, -1.62827, -0.319947, grid, direction='left')
pylab.plot(grid, res)
#pylab.plot(grid,np.sin(grid))
pylab.show()