コード例 #1
0
    def get_solver(self, func):
        """
        Returns the solver method from odespy package.

        Args:
            func: function
            function with ODE system.

        Returns: an instance of odeSolver

        """

        if self.solverMethod is solverMethod.LSODA:
            solver = odespy.Lsoda(func)
        elif self.solverMethod is solverMethod.LSODAR:
            solver = odespy.Lsodar(func)
        elif self.solverMethod is solverMethod.LSODE:
            solver = odespy.Lsode(func)
        elif self.solverMethod is solverMethod.HEUN:
            solver = odespy.Heun(func)
        elif self.solverMethod is solverMethod.EULER:
            solver = odespy.Euler(func)
        elif self.solverMethod is solverMethod.RK4:
            solver = odespy.RK4(func)
        elif self.solverMethod is solverMethod.DORMAN_PRINCE:
            solver = odespy.DormandPrince(func)
        elif self.solverMethod is solverMethod.RKFehlberg:
            solver = odespy.RKFehlberg(func)
        elif self.solverMethod is solverMethod.Dopri5:
            solver = odespy.Dopri5(func)
        elif self.solverMethod is solverMethod.Dop853:
            solver = odespy.Dop853(func)
        elif self.solverMethod is solverMethod.Vode:
            solver = odespy.Vode(func)
        elif self.solverMethod is solverMethod.AdamsBashforth2:
            solver = odespy.AdamsBashforth2(func, method='bdf')
        elif self.solverMethod is solverMethod.Radau5:
            solver = odespy.Radau5(func)
        elif self.solverMethod is solverMethod.AdamsBashMoulton2:
            solver = odespy.AdamsBashMoulton2(func)

        # update default parameters
        solver.nsteps = SolverConfigurations.N_STEPS
        solver.atol = SolverConfigurations.ABSOLUTE_TOL
        solver.rtol = SolverConfigurations.RELATIVE_TOL

        return solver
コード例 #2
0
path = [pos]
dt = 5e-13
total_time = 0
#while (x[0]<=pos[0]<=x[-1] and y[0]<=pos[1]<=y[-1] and z[0]<=pos[2]<=z[-1] and total_time<1e12):
start_time = time()
#while (x[0]<=pos[0]<=x[-1] and y[0]<=pos[1]<=y[-1] and z[0]<=pos[2]<=z[-1] and total_time<dt*1e5):
#    pos,v = update_kinematics(pos,v,dt)
#    path.append(pos)
#    total_time+=dt
#print total_time
t_steps = np.linspace(0, 4e-8, 1e5)
init_state = [
    init_pos[0], init_pos[1], init_pos[2], init_v[0], init_v[1], init_v[2]
]
#X = odeint(lorentz_force,init_state,t)
solver = odespy.Dop853(lorentz_force)
solver.set_initial_condition(init_state)
X, t = solver.solve(t_steps)
end_time = time()
v_final = np.asarray([X[-1, 3], X[-1, 4], X[-1, 5]])
print(("Elapsed time was %g seconds" % (end_time - start_time)))

#ax.plot(path_z,path_x,zs=path_y,linewidth=2)
#path = np.asarray(path)
#ax.plot(path[:,2],path[:,0],zs=path[:,1],linewidth=2)
ax.plot(X[:, 2], X[:, 0], zs=X[:, 1], linewidth=2)
ax.set_title('Path of electron through magnetic field')

# these are matplotlib.patch.Patch properties
textstr = 'init pos={0}\ninit mom={1} (MeV)\nB={2}'.format(
    init_pos, init_mom, 'ideal DS field map')
コード例 #3
0
atol = 1E-7
rtol = 1E-5
adams_or_bdf = 'bdf'
import odespy

solvers = [
    odespy.AdamsBashMoulton2(problem),
    odespy.AdamsBashMoulton3(problem),
    odespy.AdamsBashforth2(problem),
    odespy.AdamsBashforth3(problem),
    odespy.AdamsBashforth4(problem),
    odespy.AdaptiveResidual(problem, solver='Euler'),
    odespy.Backward2Step(problem),
    odespy.BackwardEuler(problem),
    odespy.Dop853(problem, rtol=rtol, atol=atol),
    odespy.Dopri5(problem, rtol=rtol, atol=atol),
    odespy.Euler(problem),
    odespy.Heun(problem),
    odespy.Leapfrog(problem),
    odespy.LeapfrogFiltered(problem),
    odespy.MidpointImplicit(problem),
    odespy.MidpointIter(problem, max_iter=10, eps_iter=1E-7),
    odespy.RK2(problem),
    odespy.RK3(problem),
    odespy.RK4(problem),
    odespy.RKFehlberg(problem, rtol=rtol, atol=atol),
    odespy.SymPy_odefun(problem),
    odespy.ThetaRule(problem),
    odespy.Trapezoidal(problem),
    odespy.Vode(problem, rtol=rtol, atol=atol, adams_or_bdf=adams_or_bdf),