コード例 #1
0
ファイル: helpers.py プロジェクト: imito/odin
def validate_features_dataset(output_dataset_path, ds_validation_path):
  ds = F.Dataset(output_dataset_path, read_only=True)
  print(ds)

  features = {}
  for key, val in ds.items():
    if 'indices_' in key:
      name = key.split('_')[-1]
      features[name] = (val, ds[name])

  all_indices = [val[0] for val in features.values()]
  # ====== sampling 250 files ====== #
  all_files = sampling_iter(it=all_indices[0].keys(), k=250,
                            seed=Config.SUPER_SEED)
  all_files = [f for f in all_files
               if all(f in ids for ids in all_indices)]
  print("#Samples:", ctext(len(all_files), 'cyan'))

  # ====== ignore the 20-figures warning ====== #
  with catch_warnings_ignore(RuntimeWarning):
    for file_name in all_files:
      X = {}
      for feat_name, (ids, data) in features.items():
        start, end = ids[file_name]
        X[feat_name] = data[start:end][:].astype('float32')
      V.plot_multiple_features(features=X, fig_width=20,
            title='[%s]%s' % (ds['dsname'][file_name], file_name))

  V.plot_save(ds_validation_path, dpi=12)
コード例 #2
0
ファイル: helpers.py プロジェクト: professorlust/odin-ai
def validate_features_dataset(output_dataset_path, ds_validation_path):
    ds = F.Dataset(output_dataset_path, read_only=True)
    print(ds)

    features = {}
    for key, val in ds.items():
        if 'indices_' in key:
            name = key.split('_')[-1]
            features[name] = (val, ds[name])

    all_indices = [val[0] for val in features.values()]
    # ====== sampling 250 files ====== #
    all_files = sampling_iter(it=all_indices[0].keys(),
                              k=250,
                              seed=Config.SUPER_SEED)
    all_files = [f for f in all_files if all(f in ids for ids in all_indices)]
    print("#Samples:", ctext(len(all_files), 'cyan'))

    # ====== ignore the 20-figures warning ====== #
    with catch_warnings_ignore(RuntimeWarning):
        for file_name in all_files:
            X = {}
            for feat_name, (ids, data) in features.items():
                start, end = ids[file_name]
                X[feat_name] = data[start:end][:].astype('float32')
            V.plot_multiple_features(features=X,
                                     fig_width=20,
                                     title='[%s]%s' %
                                     (ds['dsname'][file_name], file_name))

    V.plot_save(ds_validation_path, dpi=12)
コード例 #3
0
ファイル: utils.py プロジェクト: trungnt13/odin-ai
def save_figs(args: Arguments,
              name: str,
              figs: Optional[Sequence[plt.Figure]] = None):
    path = get_results_path(args)
    multi_figs = True
    if figs is not None and len(as_tuple(figs)) == 1:
        multi_figs = False
        figs = as_tuple(figs)
    path = f'{path}/{name}.{"pdf" if multi_figs else "png"}'
    vs.plot_save(path, figs, dpi=args.dpi, verbose=True)
コード例 #4
0
def evaluate_latent(fn, feeder, title):
    y_true = []
    Z = []
    for outputs in Progbar(feeder.set_batch(batch_mode='file'),
                           name=title,
                           print_report=True,
                           print_summary=False,
                           count_func=lambda x: x[-1].shape[0]):
        name = str(outputs[0])
        idx = int(outputs[1])
        data = outputs[2:]
        assert idx == 0
        y_true.append(name)
        Z.append(fn(*data))
    Z = np.concatenate(Z, axis=0)
    # ====== visualize spectrogram ====== #
    if Z.ndim >= 3:
        sample = np.random.choice(range(len(Z)), size=3, replace=False)
        spec = Z[sample.astype('int32')]
        y = [y_true[int(i)] for i in sample]
        plot_figure(nrow=6, ncol=6)
        for i, (s, tit) in enumerate(zip(spec, y)):
            s = s.reshape(len(s), -1)
            plot_spectrogram(s.T, ax=(1, 3, i + 1), title=tit)
    # ====== visualize each point ====== #
    # flattent to 2D
    Z = np.reshape(Z, newshape=(len(Z), -1))
    # tsne if necessary
    if Z.shape[-1] > 3:
        Z = fast_tsne(Z,
                      n_components=3,
                      n_jobs=8,
                      random_state=K.get_rng().randint(0, 10e8))
    # color and marker
    Z_color = [digit_color_map[i.split('_')[-1]] for i in y_true]
    Z_marker = [gender_marker_map[i.split('_')[1]] for i in y_true]
    plot_figure(nrow=6, ncol=20)
    for i, azim in enumerate((15, 60, 120)):
        plot_scatter(x=Z[:, 0],
                     y=Z[:, 1],
                     z=Z[:, 2],
                     ax=(1, 3, i + 1),
                     size=4,
                     color=Z_color,
                     marker=Z_marker,
                     azim=azim,
                     legend=legends if i == 1 else None,
                     legend_ncol=11,
                     fontsize=10,
                     title=title)
    plot_save(os.path.join(FIG_PATH, '%s.pdf' % title))
コード例 #5
0
def plot_images(df: pd.DataFrame, path: str, show_reconstruction: bool = True):
    for zdim, group1 in tqdm(df.groupby('zdim')):
        tmp = group1.groupby('gamma')
        n_row = len(tmp)
        n_col = max(len(g) for _, g in tmp)
        plt.figure(figsize=(n_col * 1.5, n_row * 1.5 + 1.5), dpi=150)
        count = 0
        for gamma, group2 in list(iter(tmp))[::-1]:  # reverse the row order
            for i, (beta, _, _, recon, sample) in enumerate(group2.values):
                img = recon if show_reconstruction else sample
                img[np.isnan(img)] = 1.
                plt.subplot(n_row, n_col, count + 1)
                plt.imshow(img, cmap='Greys_r')
                plt.axis('off')
                if not args.no_anno:
                    plt.title(f'b={beta} g={gamma}', fontsize=10)
                count += 1
        plt.suptitle(f'z={zdim}')
        plt.tight_layout(rect=[0.0, 0.0, 1.0, 1.001])
    vs.plot_save(path, verbose=True)
コード例 #6
0
  def on_compare(self, models, save_path):
    scores = [
        'mllk', 'mig', 'beta', 'factor', 'uca', 'nmi', 'sap', 'd', 'c', 'i'
    ]
    scores = {
        name: self.get_scores('score', [i.hash for i in models
                                       ], name) for name in scores
    }
    ncol = 5
    nrow = int(np.ceil(len(scores) / ncol))

    df = models.to_dataframe()
    for dsname, group in df.groupby('ds'):
      name = group['vae'] + '-' + group['strategy'] + '-' + group[
          'semi'].astype(str)
      colors = sns.color_palette(n_colors=group.shape[0])
      X = np.arange(group.shape[0])

      fig = plt.figure(figsize=(3 * ncol, 3 * nrow))
      for idx, (key, val) in enumerate(scores.items()):
        y = np.array([val[hash_code] for hash_code in group['hash']])
        vmin, vmax = np.min(y), np.max(y)
        y = y - np.min(y)
        ax = plt.subplot(nrow, ncol, idx + 1)
        points = [
            ax.scatter(x_, y_, s=32, color=c_, alpha=0.8)
            for x_, y_, c_ in zip(X, y, colors)
        ]
        ax.set_title(key)
        plt.yticks(np.linspace(0., np.max(y), 5),
                   ["%.2f" % i for i in np.linspace(vmin, vmax, 5)])
        ax.tick_params(bottom=False, labelbottom=False, labelsize=8)
        # show legend:
        if idx == 0:
          ax.legend(points, [i for i in name],
                    fontsize=6,
                    fancybox=False,
                    framealpha=0.)
      fig.suptitle(dsname)
      fig.tight_layout(rect=[0, 0.03, 1, 0.97])
    vs.plot_save(os.path.join(save_path, 'compare.pdf'), dpi=100)
コード例 #7
0
def evaluate_feeder(feeder, title):
    y_true_digit = []
    y_true_gender = []
    y_pred = []
    for outputs in Progbar(feeder.set_batch(batch_mode='file'),
                           name=title,
                           print_report=True,
                           print_summary=False,
                           count_func=lambda x: x[-1].shape[0]):
        name = str(outputs[0])
        idx = int(outputs[1])
        data = outputs[2:]
        assert idx == 0
        y_true_digit.append(f_digits(name))
        y_true_gender.append(f_genders(name))
        y_pred.append(f_pred(*data))
    # ====== post processing ====== #
    y_true_digit = np.array(y_true_digit, dtype='int32')
    y_true_gender = np.array(y_true_gender, dtype='int32')
    y_pred_proba = np.concatenate(y_pred, axis=0)
    y_pred_all = np.argmax(y_pred_proba, axis=-1).astype('int32')
    # ====== plotting for each gender ====== #
    plot_figure(nrow=6, ncol=25)
    for gen in range(len(genders)):
        y_true, y_pred = [], []
        for i, g in enumerate(y_true_gender):
            if g == gen:
                y_true.append(y_true_digit[i])
                y_pred.append(y_pred_all[i])
        if len(y_true) == 0:
            continue
        cm = confusion_matrix(y_true, y_pred, labels=range(len(digits)))
        plot_confusion_matrix(cm,
                              labels=digits,
                              fontsize=8,
                              ax=(1, 4, gen + 1),
                              title='[%s]%s' % (genders[gen], title))
    plot_save(os.path.join(FIG_PATH, '%s.pdf' % title))
コード例 #8
0
  # ====== check exit condition ====== #
  if args.epoch > 0:
    if epoch >= args.epoch:
      break
  elif len(record_valid_loss) >= 2 and record_valid_loss[-1] > record_valid_loss[-2]:
    print(ctext("Dropped generalization loss `%.4f` -> `%.4f`" %
                (record_valid_loss[-2], record_valid_loss[-1]), 'yellow'))
    patience -= 1
    if patience == 0:
      break
  epoch += 1
# ====== print summary training ====== #
text = V.merge_text_graph(V.print_bar(record_train_loss, title="Train Loss"),
                          V.print_bar(record_valid_loss, title="Valid Loss"))
print(text)
# ====== testing ====== #
code_samples, lo = K.eval([Z, loss], feed_dict={X: X_valid})
if args.dim > 2:
  code_samples = ml.fast_pca(code_samples, n_components=2,
                             random_state=K.get_rng().randint(10e8))
print("[Test set]     Loss: %.4f" % lo)
# plot test code samples
V.plot_figure(nrow=8, ncol=8)
ax = plt.subplot(1, 1, 1)
ax.scatter(code_samples[:, 0], code_samples[:, 1], s=2, c=y_valid, alpha=0.5)
ax.set_title('Test set')
ax.set_aspect('equal', 'box')
ax.axis('off')

V.plot_save('/tmp/tmp_ae.pdf')
コード例 #9
0
# ===========================================================================
extractor = get_module_from_path(identifier=str(args.recipe),
                                 prefix='feature_recipes',
                                 path=get_script_path())
assert len(extractor) > 0, \
"Cannot find any recipe with name: '%s' from path: '%s'" % (args.recipe, get_script_path())
recipe = extractor[0](DEBUG)
# ====== debugging ====== #
if DEBUG:
    with np.warnings.catch_warnings():
        np.warnings.filterwarnings('ignore')
        for path, name in SAMPLED_WAV_FILE:
            feat = recipe.transform(path)
            assert feat['bnf'].shape[0] == feat['mspec'].shape[0]
            V.plot_multiple_features(feat, title=feat['name'])
        V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe))
        exit()
# ===========================================================================
# Prepare the processor
# ===========================================================================
with np.warnings.catch_warnings():
    np.warnings.filterwarnings('ignore')
    jobs = list(WAV_FILES.keys())
    processor = pp.FeatureProcessor(
        jobs=jobs,
        path=os.path.join(PATH_ACOUSTIC_FEAT, args.recipe),
        extractor=recipe,
        n_cache=1200,
        ncpu=min(18,
                 cpu_count() - 2),
        override=True,
コード例 #10
0
ファイル: utils.py プロジェクト: imito/odin
def prepare_dnn_data(recipe, feat, utt_length, seed=52181208):
  """
  Return
  ------
  train_feeder : Feeder for training
  valid_feeder : Feeder for validating
  test_ids : Test indices
  test_dat : Data array
  all_speakers : list of all speaker in training set
  """
  # Load dataset
  frame_length = int(utt_length / FRAME_SHIFT)
  ds = F.Dataset(os.path.join(PATH_ACOUSTIC_FEAT, recipe),
                 read_only=True)
  X = ds[feat]
  train_indices = {name: ds['indices'][name]
                   for name in TRAIN_DATA.keys()}
  test_indices = {name: start_end
                  for name, start_end in ds['indices'].items()
                  if name not in TRAIN_DATA}
  train_indices, valid_indices = train_valid_test_split(
      x=list(train_indices.items()), train=0.9, inc_test=False, seed=seed)
  all_speakers = sorted(set(TRAIN_DATA.values()))
  n_speakers = max(all_speakers) + 1
  print("#Train files:", ctext(len(train_indices), 'cyan'))
  print("#Valid files:", ctext(len(valid_indices), 'cyan'))
  print("#Test files:", ctext(len(test_indices), 'cyan'))
  print("#Speakers:", ctext(n_speakers, 'cyan'))
  recipes = [
      F.recipes.Sequencing(frame_length=frame_length, step_length=frame_length,
                           end='pad', pad_value=0, pad_mode='post',
                           data_idx=0),
      F.recipes.Name2Label(lambda name:TRAIN_DATA[name], ref_idx=0),
      F.recipes.LabelOneHot(nb_classes=n_speakers, data_idx=1)
  ]
  train_feeder = F.Feeder(
      data_desc=F.IndexedData(data=X, indices=train_indices),
      batch_mode='batch', ncpu=7, buffer_size=12)
  valid_feeder = F.Feeder(
      data_desc=F.IndexedData(data=X, indices=valid_indices),
      batch_mode='batch', ncpu=2, buffer_size=4)
  train_feeder.set_recipes(recipes)
  valid_feeder.set_recipes(recipes)
  print(train_feeder)
  # ====== cache the test data ====== #
  cache_dat = os.path.join(PATH_EXP, 'test_%s_%d.dat' % (feat, int(utt_length)))
  cache_ids = os.path.join(PATH_EXP, 'test_%s_%d.ids' % (feat, int(utt_length)))
  # validate cache files
  if os.path.exists(cache_ids):
    with open(cache_ids, 'rb') as f:
      ids = pickle.load(f)
    if len(ids) != len(test_indices):
      os.remove(cache_ids)
      if os.path.exists(cache_dat):
        os.remove(cache_dat)
  elif os.path.exists(cache_dat):
    os.remove(cache_dat)
  # caching
  if not os.path.exists(cache_dat):
    dat = F.MmapData(cache_dat, dtype='float16',
                     shape=(0, frame_length, X.shape[1]))
    ids = {}
    prog = Progbar(target=len(test_indices))
    s = 0
    for name, (start, end) in test_indices.items():
      y = X[start:end]
      y = segment_axis(y, axis=0,
                       frame_length=frame_length, step_length=frame_length,
                       end='pad', pad_value=0, pad_mode='post')
      dat.append(y)
      # update indices
      ids[name] = (s, s + len(y))
      s += len(y)
      # update progress
      prog.add(1)
    dat.flush()
    dat.close()
    with open(cache_ids, 'wb') as f:
      pickle.dump(ids, f)
  # ====== re-load ====== #
  dat = F.MmapData(cache_dat, read_only=True)
  with open(cache_ids, 'rb') as f:
    ids = pickle.load(f)
  # ====== save some sample ====== #
  sample_path = os.path.join(PATH_EXP,
                             'test_%s_%d.pdf' % (feat, int(utt_length)))
  V.plot_figure(nrow=9, ncol=6)
  for i, (name, (start, end)) in enumerate(
      sampling_iter(it=sorted(ids.items(), key=lambda x: x[0]), k=12, seed=52181208)):
    x = dat[start:end][:].astype('float32')
    ax = V.plot_spectrogram(x[np.random.randint(0, len(x))].T,
                            ax=(12, 1, i + 1), title='')
    ax.set_title(name)
  V.plot_save(sample_path)
  return (train_feeder, valid_feeder,
          ids, dat, all_speakers)
コード例 #11
0
ファイル: utils.py プロジェクト: trungnt13/odin-ai
def prepare_dnn_data(recipe, feat, utt_length, seed=87654321):
    """
  Return
  ------
  train_feeder : Feeder for training
  valid_feeder : Feeder for validating
  test_ids : Test indices
  test_dat : Data array
  all_speakers : list of all speaker in training set
  """
    # Load dataset
    frame_length = int(utt_length / FRAME_SHIFT)
    ds = F.Dataset(os.path.join(PATH_ACOUSTIC_FEAT, recipe), read_only=True)
    X = ds[feat]
    train_indices = {name: ds['indices'][name] for name in TRAIN_DATA.keys()}
    test_indices = {
        name: start_end
        for name, start_end in ds['indices'].items() if name not in TRAIN_DATA
    }
    train_indices, valid_indices = train_valid_test_split(x=list(
        train_indices.items()),
                                                          train=0.9,
                                                          inc_test=False,
                                                          seed=seed)
    all_speakers = sorted(set(TRAIN_DATA.values()))
    n_speakers = max(all_speakers) + 1
    print("#Train files:", ctext(len(train_indices), 'cyan'))
    print("#Valid files:", ctext(len(valid_indices), 'cyan'))
    print("#Test files:", ctext(len(test_indices), 'cyan'))
    print("#Speakers:", ctext(n_speakers, 'cyan'))
    recipes = [
        F.recipes.Sequencing(frame_length=frame_length,
                             step_length=frame_length,
                             end='pad',
                             pad_value=0,
                             pad_mode='post',
                             data_idx=0),
        F.recipes.Name2Label(lambda name: TRAIN_DATA[name], ref_idx=0),
        F.recipes.LabelOneHot(nb_classes=n_speakers, data_idx=1)
    ]
    train_feeder = F.Feeder(data_desc=F.IndexedData(data=X,
                                                    indices=train_indices),
                            batch_mode='batch',
                            ncpu=7,
                            buffer_size=12)
    valid_feeder = F.Feeder(data_desc=F.IndexedData(data=X,
                                                    indices=valid_indices),
                            batch_mode='batch',
                            ncpu=2,
                            buffer_size=4)
    train_feeder.set_recipes(recipes)
    valid_feeder.set_recipes(recipes)
    print(train_feeder)
    # ====== cache the test data ====== #
    cache_dat = os.path.join(PATH_EXP,
                             'test_%s_%d.dat' % (feat, int(utt_length)))
    cache_ids = os.path.join(PATH_EXP,
                             'test_%s_%d.ids' % (feat, int(utt_length)))
    # validate cache files
    if os.path.exists(cache_ids):
        with open(cache_ids, 'rb') as f:
            ids = pickle.load(f)
        if len(ids) != len(test_indices):
            os.remove(cache_ids)
            if os.path.exists(cache_dat):
                os.remove(cache_dat)
    elif os.path.exists(cache_dat):
        os.remove(cache_dat)
    # caching
    if not os.path.exists(cache_dat):
        dat = F.MmapData(cache_dat,
                         dtype='float16',
                         shape=(0, frame_length, X.shape[1]))
        ids = {}
        prog = Progbar(target=len(test_indices))
        s = 0
        for name, (start, end) in test_indices.items():
            y = X[start:end]
            y = segment_axis(y,
                             axis=0,
                             frame_length=frame_length,
                             step_length=frame_length,
                             end='pad',
                             pad_value=0,
                             pad_mode='post')
            dat.append(y)
            # update indices
            ids[name] = (s, s + len(y))
            s += len(y)
            # update progress
            prog.add(1)
        dat.flush()
        dat.close()
        with open(cache_ids, 'wb') as f:
            pickle.dump(ids, f)
    # ====== re-load ====== #
    dat = F.MmapData(cache_dat, read_only=True)
    with open(cache_ids, 'rb') as f:
        ids = pickle.load(f)
    # ====== save some sample ====== #
    sample_path = os.path.join(PATH_EXP,
                               'test_%s_%d.pdf' % (feat, int(utt_length)))
    V.plot_figure(nrow=9, ncol=6)
    for i, (name, (start, end)) in enumerate(
            sampling_iter(it=sorted(ids.items(), key=lambda x: x[0]),
                          k=12,
                          seed=87654321)):
        x = dat[start:end][:].astype('float32')
        ax = V.plot_spectrogram(x[np.random.randint(0, len(x))].T,
                                ax=(12, 1, i + 1),
                                title='')
        ax.set_title(name)
    V.plot_save(sample_path)
    return (train_feeder, valid_feeder, ids, dat, all_speakers)
コード例 #12
0
ファイル: helpers.py プロジェクト: professorlust/odin-ai
def prepare_dnn_data(save_dir,
                     feat_name=None,
                     utt_length=None,
                     seq_mode=None,
                     min_dur=None,
                     min_utt=None,
                     exclude=None,
                     train_proportion=None,
                     return_dataset=False):
    assert os.path.isdir(save_dir), \
        "Path to '%s' is not a directory" % save_dir
    if feat_name is None:
        feat_name = FEATURE_NAME
    if utt_length is None:
        utt_length = int(_args.utt)
    if seq_mode is None:
        seq_mode = str(_args.seq).strip().lower()
    if min_dur is None:
        min_dur = MINIMUM_UTT_DURATION
    if min_utt is None:
        min_utt = MINIMUM_UTT_PER_SPEAKERS
    if exclude is None:
        exclude = str(_args.exclude).strip()
    print("Minimum duration: %s(s)" % ctext(min_dur, 'cyan'))
    print("Minimum utt/spk : %s(utt)" % ctext(min_utt, 'cyan'))
    # ******************** prepare dataset ******************** #
    path = os.path.join(PATH_ACOUSTIC_FEATURES, FEATURE_RECIPE)
    assert os.path.exists(
        path), "Cannot find acoustic dataset at path: %s" % path
    ds = F.Dataset(path=path, read_only=True)
    rand = np.random.RandomState(seed=Config.SUPER_SEED)
    # ====== find the right feature ====== #
    assert feat_name in ds, "Cannot find feature with name: %s" % feat_name
    X = ds[feat_name]
    ids_name = 'indices_%s' % feat_name
    assert ids_name in ds, "Cannot find indices with name: %s" % ids_name
    # ====== basic path ====== #
    path_filtered_data = os.path.join(save_dir, 'filtered_files.pkl')
    path_train_files = os.path.join(save_dir, 'train_files.pkl')
    path_speaker_info = os.path.join(save_dir, 'speaker_info.pkl')
    # ******************** cannot find cached data ******************** #
    if any(not os.path.exists(p)
           for p in [path_filtered_data, path_train_files, path_speaker_info]):
        # ====== exclude some dataset ====== #
        if len(exclude) > 0:
            exclude_dataset = {i: 1 for i in exclude.split(',')}
            print("* Excluded dataset:", ctext(exclude_dataset, 'cyan'))
            indices = {
                name: (start, end)
                for name, (start, end) in ds[ids_name].items()
                if ds['dsname'][name] not in exclude_dataset
            }
            # special case exclude all the noise data
            if 'noise' in exclude_dataset:
                indices = {
                    name: (start, end)
                    for name, (start, end) in indices.items()
                    if '/' not in name
                }
        else:
            indices = {i: j for i, j in ds[ids_name].items()}
        # ====== down-sampling if necessary ====== #
        if _args.downsample > 1000:
            dataset2name = defaultdict(list)
            # ordering the indices so we sample the same set every time
            for name in sorted(indices.keys()):
                dataset2name[ds['dsname'][name]].append(name)
            n_total_files = len(indices)
            n_sample_files = int(_args.downsample)
            # get the percentage of each dataset
            dataset2per = {
                i: len(j) / n_total_files
                for i, j in dataset2name.items()
            }
            # sampling based on percentage
            _ = {}
            for dsname, flist in dataset2name.items():
                rand.shuffle(flist)
                n_dataset_files = int(dataset2per[dsname] * n_sample_files)
                _.update({i: indices[i] for i in flist[:n_dataset_files]})
            indices = _
        # ====== * filter out "bad" sample ====== #
        indices = filter_utterances(X=X,
                                    indices=indices,
                                    spkid=ds['spkid'],
                                    min_utt=min_utt,
                                    min_dur=min_dur,
                                    remove_min_length=True,
                                    remove_min_uttspk=True,
                                    n_speakers=None,
                                    ncpu=None,
                                    save_path=path_filtered_data)
        # ====== all training file name ====== #
        # modify here to train full dataset
        all_name = sorted(indices.keys())
        rand.shuffle(all_name)
        rand.shuffle(all_name)
        n_files = len(all_name)
        print("#Files:", ctext(n_files, 'cyan'))
        # ====== speaker mapping ====== #
        name2spk = {name: ds['spkid'][name] for name in all_name}
        all_speakers = sorted(set(name2spk.values()))
        spk2label = {spk: i for i, spk in enumerate(all_speakers)}
        name2label = {name: spk2label[spk] for name, spk in name2spk.items()}
        assert len(name2label) == len(all_name)
        print("#Speakers:", ctext(len(all_speakers), 'cyan'))
        # ====== stratify sampling based on speaker ====== #
        valid_name = []
        # create speakers' cluster
        label2name = defaultdict(list)
        for name, label in sorted(name2label.items(), key=lambda x: x[0]):
            label2name[label].append(name)
        # for each speaker with >= 3 utterance
        for label, name_list in sorted(label2name.items(), key=lambda x: x[0]):
            if len(name_list) < 3:
                continue
            n = max(1, int(0.05 * len(name_list)))  # 5% for validation
            valid_name += rand.choice(a=name_list, size=n,
                                      replace=False).tolist()
        # train list is the rest
        _ = set(valid_name)
        train_name = [i for i in all_name if i not in _]
        # ====== split training and validation ====== #
        train_indices = {name: indices[name] for name in train_name}
        valid_indices = {name: indices[name] for name in valid_name}
        # ====== save cached data ====== #
        with open(path_train_files, 'wb') as fout:
            pickle.dump({'train': train_indices, 'valid': valid_indices}, fout)
        with open(path_speaker_info, 'wb') as fout:
            pickle.dump(
                {
                    'all_speakers': all_speakers,
                    'name2label': name2label,
                    'spk2label': spk2label
                }, fout)
    # ******************** load cached data ******************** #
    else:
        with open(path_train_files, 'rb') as fin:
            obj = pickle.load(fin)
            train_indices = obj['train']
            valid_indices = obj['valid']
        with open(path_speaker_info, 'rb') as fin:
            obj = pickle.load(fin)
            all_speakers = obj['all_speakers']
            name2label = obj['name2label']
            spk2label = obj['spk2label']

    # ******************** print log ******************** #

    def summary_indices(ids):
        datasets = defaultdict(int)
        speakers = defaultdict(list)
        text = ''
        for name in sorted(ids.keys()):
            text += name + str(ids[name])
            dsname = ds['dsname'][name]
            datasets[dsname] += 1
            speakers[dsname].append(ds['spkid'][name])
        for dsname in sorted(datasets.keys()):
            print('  %-18s: %s(utt) %s(spk)' %
                  (dsname, ctext('%6d' % datasets[dsname], 'cyan'),
                   ctext(len(set(speakers[dsname])), 'cyan')))
        print('  MD5 checksum:', ctext(crypto.md5_checksum(text), 'lightcyan'))

    # ====== training files ====== #
    print(
        "#Train files:", ctext('%-8d' % len(train_indices), 'cyan'), "#spk:",
        ctext(len(set(name2label[name] for name in train_indices.keys())),
              'cyan'), "#noise:",
        ctext(len([name for name in train_indices.keys() if '/' in name]),
              'cyan'))
    summary_indices(ids=train_indices)
    # ====== valid files ====== #
    print(
        "#Valid files:", ctext('%-8d' % len(valid_indices), 'cyan'), "#spk:",
        ctext(len(set(name2label[name] for name in valid_indices.keys())),
              'cyan'), "#noise:",
        ctext(len([name for name in valid_indices.keys() if '/' in name]),
              'cyan'))
    summary_indices(ids=valid_indices)
    # ******************** create the recipe ******************** #
    assert all(name in name2label for name in train_indices.keys())
    assert all(name in name2label for name in valid_indices.keys())
    recipes = prepare_dnn_feeder_recipe(name2label=name2label,
                                        n_speakers=len(all_speakers),
                                        utt_length=utt_length,
                                        seq_mode=seq_mode)
    # ====== downsample training set for analyzing if required ====== #
    if train_proportion is not None:
        assert 0 < train_proportion < 1
        n_training = len(train_indices)
        train_indices = list(train_indices.items())
        rand.shuffle(train_indices)
        rand.shuffle(train_indices)
        train_indices = dict(train_indices[:int(n_training *
                                                train_proportion)])
    # ====== create feeder ====== #
    train_feeder = F.Feeder(data_desc=F.IndexedData(data=X,
                                                    indices=train_indices),
                            batch_mode='batch',
                            ncpu=NCPU,
                            buffer_size=256)

    valid_feeder = F.Feeder(data_desc=F.IndexedData(data=X,
                                                    indices=valid_indices),
                            batch_mode='batch',
                            ncpu=max(2, NCPU // 4),
                            buffer_size=64)

    train_feeder.set_recipes(recipes)
    valid_feeder.set_recipes(recipes)
    print(train_feeder)
    print(valid_feeder)
    # ====== debugging ====== #
    if IS_DEBUGGING:
        import matplotlib
        matplotlib.use('Agg')
        prog = Progbar(target=len(valid_feeder),
                       print_summary=True,
                       name="Iterating validation set")
        samples = []
        n_visual = 250
        for name, idx, X, y in valid_feeder.set_batch(batch_size=100000,
                                                      batch_mode='file',
                                                      seed=None,
                                                      shuffle_level=0):
            assert idx == 0, "Utterances longer than %.2f(sec)" % (
                100000 * Config.STEP_LENGTH)
            prog['X'] = X.shape
            prog['y'] = y.shape
            prog.add(X.shape[0])
            # random sampling
            if rand.rand(1) < 0.5 and len(samples) < n_visual:
                for i in rand.randint(0, X.shape[0], size=4, dtype='int32'):
                    samples.append((name, X[i], np.argmax(y[i], axis=-1)))
        # plot the spectrogram
        n_visual = len(samples)
        V.plot_figure(nrow=n_visual, ncol=8)
        for i, (name, X, y) in enumerate(samples):
            is_noise = '/' in name
            assert name2label[
                name] == y, "Speaker label mismatch for file: %s" % name
            name = name.split('/')[0]
            dsname = ds['dsname'][name]
            spkid = ds['spkid'][name]
            y = np.argmax(y, axis=-1)
            ax = V.plot_spectrogram(X.T,
                                    ax=(n_visual, 1, i + 1),
                                    title='#%d' % (i + 1))
            ax.set_title(
                '[%s][%s]%s  %s' %
                ('noise' if is_noise else 'clean', dsname, name, spkid),
                fontsize=6)
        # don't need to be high resolutions
        V.plot_save('/tmp/tmp.pdf', dpi=12)
        exit()
    # ====== return ====== #
    if bool(return_dataset):
        return train_feeder, valid_feeder, all_speakers, ds
    return train_feeder, valid_feeder, all_speakers
コード例 #13
0
ファイル: iris_latent_space.py プロジェクト: imito/odin
# ===========================================================================
def plot(train, score, title, applying_pca=False):
  if applying_pca:
    pca = PCA(n_components=NUM_DIM)
    pca.fit(train)
    train = pca.transform(train)
    score = pca.transform(score)
  plot_figure(nrow=6, ncol=12)
  plot_scatter(x=train[:, 0], y=train[:, 1],
               z=None if NUM_DIM < 3 or train.shape[1] < 3 else train[:, 2],
               size=POINT_SIZE, color=y_train_color, marker=y_train_marker,
               fontsize=12, legend=legends,
               title='[train]' + str(title),
               ax=(1, 2, 1))
  plot_scatter(x=score[:, 0], y=score[:, 1],
               z=None if NUM_DIM < 3 or score.shape[1] < 3 else score[:, 2],
               size=POINT_SIZE, color=y_score_color, marker=y_score_marker,
               fontsize=12, legend=legends,
               title='[score]' + str(title),
               ax=(1, 2, 2))

plot(train=X_train_pca, score=X_score_pca, title='PCA')
plot(train=X_train_tsne, score=X_score_tsne, title='T-SNE')
plot(train=X_train_tsne_pca, score=X_score_tsne_pca, title='T-SNE + PCA')
plot(train=X_train_lda, score=X_score_lda, title='LDA')
plot(train=X_train_plda, score=X_score_plda, title='PLDA')
plot(train=X_train_plda, score=X_score_plda, title='PLDA + PCA', applying_pca=True)
plot(train=X_train_gmm, score=X_score_gmm, title='GMM')
plot(train=X_train_rbm, score=X_score_rbm, title='RBM')
plot_save('/tmp/tmp.pdf')
コード例 #14
0
      assert FEATURE_NAME in feat
      # update progress
      if isinstance(feat, pp.base.ExtractorSignal):
        error_signal.append(feat)
        prog.add(1)
        continue
      prog['spkid'] = feat['spkid']
      prog['name'] = feat['name']
      prog['dsname'] = feat['dsname']
      prog['duration'] = feat['duration']
      prog.add(1)
      # 30% chance plotting
      if rand.rand() < 0.5:
        V.plot_multiple_features(feat, fig_width=20,
                                 title='[%s]%s' % (feat['dsname'], feat['name']))
    V.plot_save(os.path.join(EXP_DIR, 'debug_%s.pdf' % FEATURE_RECIPE),
                dpi=30)
    # ====== save the extractor debugging log ====== #
    pp.set_extractor_debug(recipe, debug=True)
    recipe.transform(samples[0])
    with open(os.path.join(EXP_DIR, 'debug_%s.log' % FEATURE_RECIPE), 'w') as f:
      for name, step in recipe.steps:
        f.write(step.last_debugging_text)
      # ====== print error signal ====== #
      for e in error_signal:
        f.write(str(e) + '\n')
        print(e)
  exit()
# ===========================================================================
# Running the extractor
# ===========================================================================
# ====== basic path ====== #
コード例 #15
0
ファイル: det_eer_dcf.py プロジェクト: imito/odin
stdv_False = 1.5
false = stdv_False * np.random.randn(n_false) + mean_False

y_true = np.zeros(shape=(n_true + n_false,))
y_true[:n_true] = 1
y_score = np.concatenate((true, false))

Pfa, Pmiss = K.metrics.det_curve(y_true=y_true, y_score=y_score)

min_DCF, Pfa_opt, Pmiss_opt = K.metrics.compute_minDCF(Pfa, Pmiss)
print("MinDCF, Pmiss_opt, Pfa_opt:", min_DCF, Pmiss_opt, Pfa_opt)
print("EER1:", K.metrics.compute_EER(Pfa, Pmiss))

pmiss, pfa = rocch(tar_scores=true, nontar_scores=false)
min_DCF, Pfa_opt, Pmiss_opt = K.metrics.compute_minDCF(pfa, pmiss)
print("[Sidekit]MinDCF, Pmiss_opt, Pfa_opt:", min_DCF, Pmiss_opt, Pfa_opt)
print("[Sidekit]EER:", compute_EER(pmiss, pfa))
print("[Sidekit]MinDCF, Pmiss_opt, Pfa_opt, ..., EER:", fast_minDCF(tar=true, non=false, plo=0))

fpr, tpr, _ = K.metrics.roc_curve(y_true=y_true, y_score=y_score)
auc = K.metrics.compute_AUC(tpr, fpr)

# ====== specialized plotting ====== #
plt.figure()
V.plot_detection_curve(x=pfa, y=pmiss, curve='det')
plt.figure()
V.plot_detection_curve(x=Pfa, y=Pmiss, curve='det')
plt.figure()
V.plot_detection_curve(x=fpr, y=tpr, curve='roc')
V.plot_save('/tmp/tmp.pdf')
コード例 #16
0
def plot_monitoring_epoch(X, X_drop, y, Z, Z_drop, W_outputs, W_drop_outputs,
                          pi, pi_drop, row_name, dropout_percentage,
                          curr_epoch, ds_name, labels, save_dir):
    # Order of W_outputs: [W, W_stdev_total, W_stdev_explained]
    from matplotlib import pyplot as plt
    if y.ndim == 2:
        y = np.argmax(y, axis=-1)
    y = np.array([labels[i] for i in y])
    dropout_percentage_text = '%g%%' % (dropout_percentage * 100)

    Z_pca = fast_pca(Z, n_components=2, random_state=5218)
    Z_pca_drop = fast_pca(Z_drop, n_components=2, random_state=5218)
    if W_outputs is not None:
        X_pca, X_pca_drop, W_pca, W_pca_drop = fast_pca(X,
                                                        X_drop,
                                                        W_outputs[0],
                                                        W_drop_outputs[0],
                                                        n_components=2,
                                                        random_state=5218)
    # ====== downsampling ====== #
    rand = np.random.RandomState(seed=5218)
    n_test_samples = len(y)
    ids = np.arange(n_test_samples, dtype='int32')
    if n_test_samples > 8000:
        ids = rand.choice(ids, size=8000, replace=False)
    # ====== scatter configuration ====== #
    config = dict(size=6, labels=None)
    y = y[ids]

    X = X[ids]
    X_drop = X_drop[ids]
    Z_pca = Z_pca[ids]
    X_pca = X_pca[ids]
    W_pca = W_pca[ids]

    W_outputs = [w[ids] for w in W_outputs]
    W_drop_outputs = [w[ids] for w in W_drop_outputs]
    Z_pca_drop = Z_pca_drop[ids]
    X_pca_drop = X_pca_drop[ids]
    W_pca_drop = W_pca_drop[ids]

    if pi is not None:
        pi = pi[ids]
        pi_drop = pi_drop[ids]
    # ====== plotting NO reconstruction ====== #
    if W_outputs is None:
        plot_figure(nrow=8, ncol=20)
        fast_scatter(x=Z_pca,
                     y=y,
                     title="[PCA] Test data latent space",
                     enable_legend=True,
                     ax=(1, 2, 1),
                     **config)
        fast_scatter(x=Z_pca_drop,
                     y=y,
                     title="[PCA][Dropped:%s] Test data latent space" %
                     dropout_percentage_text,
                     ax=(1, 2, 2),
                     **config)
    # ====== plotting WITH reconstruction ====== #
    else:
        plot_figure(nrow=16, ncol=20)
        # original test data WITHOUT dropout
        fast_scatter(x=X_pca,
                     y=y,
                     title="[PCA][Test Data] Original",
                     ax=(2, 3, 1),
                     **config)
        fast_scatter(x=W_pca,
                     y=y,
                     title="Reconstructed",
                     ax=(2, 3, 2),
                     **config)
        fast_scatter(x=Z_pca,
                     y=y,
                     title="Latent space",
                     ax=(2, 3, 3),
                     **config)
        # original test data WITH dropout
        fast_scatter(x=X_pca_drop,
                     y=y,
                     title="[PCA][Dropped:%s][Test Data] Original" %
                     dropout_percentage_text,
                     ax=(2, 3, 4),
                     **config)
        fast_scatter(x=W_pca_drop,
                     y=y,
                     title="Reconstructed",
                     ax=(2, 3, 5),
                     enable_legend=True,
                     **config)
        fast_scatter(x=Z_pca_drop,
                     y=y,
                     title="Latent space",
                     ax=(2, 3, 6),
                     **config)
    plot_save(os.path.join(save_dir, 'latent_epoch%d.png') % curr_epoch,
              dpi=180,
              clear_all=True,
              log=True)
    # ====== plot count-sum ====== #
    if W_outputs is not None:
        X_countsum = _clip_count_sum(np.sum(X, axis=-1))
        W_countsum = _clip_count_sum(np.sum(W_outputs[0], axis=-1))
        X_drop_countsum = _clip_count_sum(np.sum(X_drop, axis=-1))
        W_drop_countsum = _clip_count_sum(np.sum(W_drop_outputs[0], axis=-1))
        series_config = [
            dict(xscale='linear', yscale='linear', sort_by=None),
            dict(xscale='linear', yscale='linear', sort_by='expected')
        ]

        if pi is not None:
            pi_sum = np.mean(pi, axis=-1)
            pi_drop_sum = np.mean(pi_drop, axis=-1)
        # plot the reconstruction count sum
        plot_figure(nrow=3 * 5 + 8, ncol=18)
        with plot_gridSpec(nrow=3 * (2 if pi is None else 3) + 4 * 3 + 1,
                           ncol=6,
                           wspace=1.0,
                           hspace=0.8) as grid:
            kws = dict(colorbar=True,
                       fontsize=10,
                       size=10,
                       marker=y,
                       n_samples=1200)
            # without dropout
            ax = subplot(grid[:3, 0:3])
            plot_scatter(x=X_pca,
                         val=X_countsum,
                         ax=ax,
                         legend_enable=False,
                         title='Original data (Count-sum)',
                         **kws)
            ax = subplot(grid[:3, 3:6])
            plot_scatter(x=W_pca,
                         val=W_countsum,
                         ax=ax,
                         legend_enable=False,
                         title='Reconstruction (Count-sum)',
                         **kws)
            # with dropout
            ax = subplot(grid[3:6, 0:3])
            plot_scatter(x=X_pca_drop,
                         val=X_drop_countsum,
                         ax=ax,
                         legend_enable=True if pi is None else False,
                         legend_ncol=len(labels),
                         title='[Dropped:%s]Original data (Count-sum)' %
                         dropout_percentage_text,
                         **kws)
            ax = subplot(grid[3:6, 3:6])
            plot_scatter(x=W_pca_drop,
                         val=W_drop_countsum,
                         ax=ax,
                         legend_enable=False,
                         title='[Dropped:%s]Reconstruction (Count-sum)' %
                         dropout_percentage_text,
                         **kws)
            row_start = 6
            # zero-inflated pi
            if pi is not None:
                ax = subplot(grid[6:9, 0:3])
                plot_scatter(x=X_pca,
                             val=pi_sum,
                             ax=ax,
                             legend_enable=True,
                             legend_ncol=len(labels),
                             title='Zero-inflated probabilities',
                             **kws)
                ax = subplot(grid[6:9, 3:6])
                plot_scatter(x=X_pca,
                             val=pi_drop_sum,
                             ax=ax,
                             legend_enable=False,
                             title='[Dropped:%s]Zero-inflated probabilities' %
                             dropout_percentage_text,
                             **kws)
                row_start += 3

            # plot the count-sum series
            def plot_count_sum_series(x, w, p, row_start, tit):
                if len(w) != 3:  # no statistics provided
                    return
                expected, stdev_total, stdev_explained = w
                count_sum_observed = np.sum(x, axis=0)
                count_sum_expected = np.sum(expected, axis=0)
                count_sum_stdev_total = np.sum(stdev_total, axis=0)
                count_sum_stdev_explained = np.sum(stdev_explained, axis=0)
                if p is not None:
                    p_sum = np.mean(p, axis=0)
                for i, kws in enumerate(series_config):
                    ax = subplot(grid[row_start:row_start + 3,
                                      (i * 3):(i * 3 + 3)])
                    ax, handles, indices = plot_series_statistics(
                        count_sum_observed,
                        count_sum_expected,
                        explained_stdev=count_sum_stdev_explained,
                        total_stdev=count_sum_stdev_total,
                        fontsize=8,
                        ax=ax,
                        legend_enable=False,
                        title=tit if i == 0 else None,
                        despine=True if p is None else False,
                        return_handles=True,
                        return_indices=True,
                        **kws)
                    if p is not None:
                        _show_zero_inflated_pi(p_sum, ax, handles, indices)
                    plt.legend(handles=handles,
                               loc='best',
                               markerscale=4,
                               fontsize=8)

            # add one row extra padding
            row_start += 1
            plot_count_sum_series(x=X,
                                  w=W_outputs,
                                  p=pi,
                                  row_start=row_start,
                                  tit="Count-sum X_original - W_original")
            row_start += 1
            plot_count_sum_series(
                x=X_drop,
                w=W_drop_outputs,
                p=pi_drop,
                row_start=row_start + 3,
                tit="[Dropped:%s]Count-sum X_drop - W_dropout" %
                dropout_percentage_text)
            row_start += 1
            plot_count_sum_series(
                x=X,
                w=W_drop_outputs,
                p=pi_drop,
                row_start=row_start + 6,
                tit="[Dropped:%s]Count-sum X_original - W_dropout" %
                dropout_percentage_text)
        plot_save(os.path.join(save_dir, 'countsum_epoch%d.png') % curr_epoch,
                  dpi=180,
                  clear_all=True,
                  log=True)
    # ====== plot series of samples ====== #
    if W_outputs is not None and len(W_outputs) == 3:
        # NOTe: turn off pi here
        pi = None

        n_visual_samples = 8
        plot_figure(nrow=3 * n_visual_samples + 8, ncol=25)
        col_width = 5
        with plot_gridSpec(nrow=3 * n_visual_samples,
                           ncol=4 * col_width,
                           wspace=5.0,
                           hspace=1.0) as grid:
            curr_grid_index = 0
            for i in rand.permutation(len(X))[:n_visual_samples]:
                observed = X[i]
                expected, stdev_explained, stdev_total = [
                    w[i] for w in W_outputs
                ]
                expected_drop, stdev_explained_drop, stdev_total_drop = [
                    w[i] for w in W_drop_outputs
                ]
                if pi is not None:
                    p_zi = pi[i]
                    p_zi_drop = pi_drop[i]
                # compare to W_original
                for j, kws in enumerate(series_config):
                    ax = subplot(grid[curr_grid_index:curr_grid_index + 3,
                                      (j * col_width):(j * col_width +
                                                       col_width)])
                    ax, handles, indices = plot_series_statistics(
                        observed,
                        expected,
                        explained_stdev=stdev_explained,
                        total_stdev=stdev_total,
                        fontsize=8,
                        legend_enable=False,
                        despine=True if pi is None else False,
                        title=("'%s' X_original - W_original" %
                               row_name[i]) if j == 0 else None,
                        return_handles=True,
                        return_indices=True,
                        **kws)
                    if pi is not None:
                        _show_zero_inflated_pi(p_zi, ax, handles, indices)
                    plt.legend(handles=handles,
                               loc='best',
                               markerscale=4,
                               fontsize=8)
                # compare to W_dropout
                for j, kws in enumerate(series_config):
                    col_start = col_width * 2
                    ax = subplot(
                        grid[curr_grid_index:curr_grid_index + 3,
                             (col_start +
                              j * col_width):(col_start + j * col_width +
                                              col_width)])
                    ax, handles, indices = plot_series_statistics(
                        observed,
                        expected_drop,
                        explained_stdev=stdev_explained_drop,
                        total_stdev=stdev_total_drop,
                        fontsize=8,
                        legend_enable=False,
                        despine=True if pi is None else False,
                        title=("[Dropped:%s]'%s' X_original - W_dropout" %
                               (dropout_percentage_text, row_name[i]))
                        if j == 0 else None,
                        return_handles=True,
                        return_indices=True,
                        **kws)
                    if pi is not None:
                        _show_zero_inflated_pi(p_zi_drop, ax, handles, indices)
                    plt.legend(handles=handles,
                               loc='best',
                               markerscale=4,
                               fontsize=8)
                curr_grid_index += 3
        plot_save(os.path.join(save_dir, 'samples_epoch%d.png') % curr_epoch,
                  dpi=180,
                  clear_all=True,
                  log=True)
    # ====== special case for mnist ====== #
    if 'mnist' in ds_name and W_outputs is not None:
        plot_figure(nrow=3, ncol=18)
        n_images = 32
        ids = rand.choice(np.arange(X.shape[0], dtype='int32'),
                          size=n_images,
                          replace=False)
        meta_data = [("Org", X[ids]), ("Rec", W_outputs[0][ids]),
                     ("OrgDropout", X_drop[ids]),
                     ("RecDropout", W_drop_outputs[0][ids])]
        count = 1
        for name, data in meta_data:
            for i in range(n_images):
                x = data[i].reshape(28, 28)
                plt.subplot(4, n_images, count)
                show_image(x)
                if i == 0:
                    plt.ylabel(name, fontsize=8)
                count += 1
        plt.subplots_adjust(wspace=0.05, hspace=0.05)
        plot_save(os.path.join(save_dir, 'image_epoch%d.png') % curr_epoch,
                  dpi=180,
                  clear_all=True,
                  log=True)
コード例 #17
0
ファイル: baselines.py プロジェクト: trungnt13/sisua
    # Regressor
    for name, classifier in [
            # ('SVRrbf', MultiOutputRegressor(SVR(kernel='rbf'))),
        ('Elastic',
         MultiOutputRegressor(ElasticNetCV(random_state=random_state))),
    ]:
        print("Testing Regressor:", ctext(name, 'cyan'))
        classifier.fit(X=np.concatenate([Z_train, Z_valid], axis=0),
                       y=np.concatenate([y_prot_train, y_prot_valid], axis=0))
        y_prot_test_pred = classifier.predict(Z_test)
        plot_evaluate_regressor(y_pred=y_prot_test_pred,
                                y_true=y_prot_test,
                                labels=y_prot_names,
                                title='[%s]%s-%s' %
                                (transformer_name, 'Regression', name))
    # Reconstruction
    # for name, classifier in [
    #     ('MLP', MLPRegressor(hidden_layer_sizes=(512, 512, 512), verbose=True,
    #                          random_state=random_state)),
    # ]:
    #   print("Testing Reconstruction:", ctext(name, 'cyan'))
    #   classifier.fit(X=np.concatenate([Z_train, Z_valid], axis=0),
    #                  y=np.concatenate([X_train, X_valid], axis=0))
    #   X_test_pred = classifier.predict(Z_test)
    #   plot_evaluate_reconstruction(X=X_test, X_res=X_test_pred,
    #                                gene_name=gene_name,
    #                                title='[%s]%s-%s' % (transformer_name, 'Reconstruction', name))
    # ====== save all figure ====== #
    V.plot_save(
        os.path.join(EXP_DIR, 'baseline_%s.png' % transformer_name.lower()))
コード例 #18
0
    nllk = tf.reduce_mean(-y_pred.log_prob(y_true))
    return nllk


mdn = MixtureDensityNetwork(1,
                            n_components=n_components,
                            covariance_type='none')
model = Sequential([mdn])
model.compile(optimizer='adam', loss=fn_loss)
model.fit(x=x, y=x, epochs=48, batch_size=32, verbose=True)

y = model(x)
mdn_llk = tf.reduce_mean(y.log_prob(x)).numpy()
mdn_mean = tf.reduce_mean(y.components_distribution.mean(),
                          axis=(0, -1)).numpy()

# ====== visualizing ====== #
fig = plt.figure()
sns.distplot(x, bins=80)
plt.title('Data')

fig = plt.figure()
sns.distplot(gmm.sample(n * n_components)[0], bins=80)
plt.title('GMM - llk: %.2f' % gmm_llk)

fig = plt.figure()
sns.distplot(y.sample().numpy(), bins=80)
plt.title('MDN - llk: %.2f' % mdn_llk)

vis.plot_save()
コード例 #19
0
    pp.base.EqualizeShape0(input_name=('mspec', 'mfcc', 'sdc', 'bnf',
                                       'energy', 'sad')),
    pp.base.AsType(dtype='float16'),
], debug=args.debug)
# ====== enable debug mode ====== #
if args.debug:
  with np.warnings.catch_warnings():
    np.warnings.filterwarnings('ignore')
    for i, name in enumerate(all_files[:12]):
      tmp = extractors.transform(name)
      if isinstance(tmp, pp.base.ExtractorSignal):
        print(tmp)
        exit()
      else:
        V.plot_multiple_features(tmp, title=name)
    V.plot_save(os.path.join(PATH_EXP, 'feature_debug.pdf'))
    exit()
# ===========================================================================
# Processor
# ===========================================================================
with np.warnings.catch_warnings():
  np.warnings.filterwarnings('ignore')
  processor = pp.FeatureProcessor(jobs=all_files,
      path=PATH_ACOUSTIC,
      extractor=extractors,
      n_cache=0.12,
      ncpu =min(18, cpu_count() - 2) if args.ncpu <= 0 else int(args.ncpu),
      override=True,
      identifier='name',
      log_path=os.path.join(PATH_EXP, 'processor.log'),
      stop_on_failure=True # small dataset, enable stop on failure
コード例 #20
0
ファイル: base.py プロジェクト: imito/odin
def evaluate(y_true, y_pred_proba=None, y_pred_log_proba=None,
             labels=None, title='', path=None,
             xlims=None, ylims=None, print_log=True):
  from odin.backend import to_llr
  from odin.backend.metrics import (det_curve, compute_EER, roc_curve,
                                    compute_Cavg, compute_Cnorm,
                                    compute_minDCF)

  def format_score(s):
    return ctext('%.4f' % s if is_number(s) else s, 'yellow')
  nb_classes = None
  # ====== check y_pred ====== #
  if y_pred_proba is None and y_pred_log_proba is None:
    raise ValueError("At least one of `y_pred_proba` or `y_pred_log_proba` "
                     "must not be None")
  y_pred_llr = to_llr(y_pred_proba) if y_pred_log_proba is None \
      else to_llr(y_pred_log_proba)
  nb_classes = y_pred_llr.shape[1]
  y_pred = np.argmax(y_pred_llr, axis=-1)
  # ====== check y_true ====== #
  if isinstance(y_true, Data):
    y_true = y_true.array
  if isinstance(y_true, (tuple, list)):
    y_true = np.array(y_true)
  if y_true.ndim == 2: # convert one-hot to labels
    y_true = np.argmax(y_true, axis=-1)
  # ====== check labels ====== #
  if labels is None:
    labels = [str(i) for i in range(nb_classes)]
  # ====== scoring ====== #
  if y_pred_proba is None:
    ll = 'unknown'
  else:
    ll = log_loss(y_true=y_true, y_pred=y_pred_proba)
  acc = accuracy_score(y_true=y_true, y_pred=y_pred)
  cm = confusion_matrix(y_true=y_true, y_pred=y_pred)
  # C_norm
  cnorm, cnorm_arr = compute_Cnorm(y_true=y_true,
                                   y_score=y_pred_llr,
                                   Ptrue=[0.1, 0.5],
                                   probability_input=False)
  if y_pred_log_proba is not None:
    cnorm_, cnorm_arr_ = compute_Cnorm(y_true=y_true,
                                       y_score=y_pred_log_proba,
                                       Ptrue=[0.1, 0.5],
                                       probability_input=False)
    if np.mean(cnorm) > np.mean(cnorm_): # smaller is better
      cnorm, cnorm_arr = cnorm_, cnorm_arr_
  # DET
  Pfa, Pmiss = det_curve(y_true=y_true, y_score=y_pred_llr)
  eer = compute_EER(Pfa=Pfa, Pmiss=Pmiss)
  minDCF = compute_minDCF(Pfa, Pmiss)[0]
  # PRINT LOG
  if print_log:
    print(ctext("--------", 'red'), ctext(title, 'cyan'))
    print("Log loss :", format_score(ll))
    print("Accuracy :", format_score(acc))
    print("C_norm   :", format_score(np.mean(cnorm)))
    print("EER      :", format_score(eer))
    print("minDCF   :", format_score(minDCF))
    print(print_confusion(arr=cm, labels=labels))
  # ====== save report to PDF files if necessary ====== #
  if path is not None:
    if y_pred_proba is None:
      y_pred_proba = y_pred_llr
    from matplotlib import pyplot as plt
    plt.figure(figsize=(nb_classes, nb_classes + 1))
    plot_confusion_matrix(cm, labels)
    # Cavg
    plt.figure(figsize=(nb_classes + 1, 3))
    plot_Cnorm(cnorm=cnorm_arr, labels=labels, Ptrue=[0.1, 0.5],
               fontsize=14)
    # binary classification
    if nb_classes == 2 and \
    (y_pred_proba.ndim == 1 or (y_pred_proba.ndim == 2 and
                                y_pred_proba.shape[1] == 1)):
      fpr, tpr = roc_curve(y_true=y_true, y_score=y_pred_proba.ravel())
      # det curve
      plt.figure()
      plot_detection_curve(Pfa, Pmiss, curve='det',
                           xlims=xlims, ylims=ylims, linewidth=1.2)
      # roc curve
      plt.figure()
      plot_detection_curve(fpr, tpr, curve='roc')
    # multiclasses
    else:
      y_true = one_hot(y_true, nb_classes=nb_classes)
      fpr_micro, tpr_micro, _ = roc_curve(y_true=y_true.ravel(),
                                          y_score=y_pred_proba.ravel())
      Pfa_micro, Pmiss_micro = Pfa, Pmiss
      fpr, tpr = [], []
      Pfa, Pmiss = [], []
      for i, yi in enumerate(y_true.T):
        curve = roc_curve(y_true=yi, y_score=y_pred_proba[:, i])
        fpr.append(curve[0])
        tpr.append(curve[1])
        curve = det_curve(y_true=yi, y_score=y_pred_llr[:, i])
        Pfa.append(curve[0])
        Pmiss.append(curve[1])
      plt.figure()
      plot_detection_curve(fpr_micro, tpr_micro, curve='roc',
                           linewidth=1.2, title="ROC Micro")
      plt.figure()
      plot_detection_curve(fpr, tpr, curve='roc',
                           labels=labels, linewidth=1.0,
                           title="ROC for each classes")
      plt.figure()
      plot_detection_curve(Pfa_micro, Pmiss_micro, curve='det',
                           xlims=xlims, ylims=ylims, linewidth=1.2,
                           title="DET Micro")
      plt.figure()
      plot_detection_curve(Pfa, Pmiss, curve='det',
                           xlims=xlims, ylims=ylims,
                           labels=labels, linewidth=1.0,
                           title="DET for each classes")
    plot_save(path)
コード例 #21
0
  # ====== check exit condition ====== #
  if args.epoch > 0:
    if epoch >= args.epoch:
      break
  elif len(record_valid_loss) >= 2 and record_valid_loss[-1] > record_valid_loss[-2]:
    print(ctext("Dropped generalization loss `%.4f` -> `%.4f`" %
                (record_valid_loss[-2], record_valid_loss[-1]), 'yellow'))
    patience -= 1
    if patience == 0:
      break
  epoch += 1
# ====== print summary training ====== #
text = V.merge_text_graph(V.print_bar(record_train_loss, title="Train Loss"),
                          V.print_bar(record_valid_loss, title="Valid Loss"))
print(text)
# ====== testing ====== #
code_samples, lo = K.eval([Z, loss], feed_dict={X: X_valid})
if args.dim > 2:
  code_samples = ml.fast_pca(code_samples, n_components=2,
                             random_state=K.get_rng().randint(10e8))
print("[Test set]     Loss: %.4f" % lo)
# plot test code samples
V.plot_figure(nrow=8, ncol=8)
ax = plt.subplot(1, 1, 1)
ax.scatter(code_samples[:, 0], code_samples[:, 1], s=2, c=y_valid, alpha=0.5)
ax.set_title('Test set')
ax.set_aspect('equal', 'box')
ax.axis('off')

V.plot_save('/tmp/tmp_ae.pdf')
コード例 #22
0
                            ncpu=NCPU,
                            batch=1):
            if np.random.rand() > 0.8:
                feat = {
                    i: j[:1200] if isinstance(j, np.ndarray) else j
                    for i, j in feat.items()
                }
                V.plot_multiple_features(feat,
                                         fig_width=20,
                                         title=feat['name'])
            prog['name'] = feat['name'][:48]
            prog['dsname'] = feat['dsname']
            prog['dsnoise'] = feat['dsnoise']
            prog.add(1)
        V.plot_save(
            os.path.join(
                EXP_DIR,
                'debug_%s_%s.pdf' % (FEATURE_RECIPE, AUGMENTATION_NAME)))
        # ====== save the extractor debugging log ====== #
        pp.set_extractor_debug(recipe, debug=True)
        recipe.transform(AUG_FILES[0])
        with open(
                os.path.join(
                    EXP_DIR,
                    'debug_%s_%s.log' % (FEATURE_RECIPE, AUGMENTATION_NAME)),
                'w') as f:
            for name, step in recipe.steps:
                f.write(step.last_debugging_text)
    exit()
# ===========================================================================
# Run the processor
# ===========================================================================
コード例 #23
0
ファイル: speech_augmentation.py プロジェクト: imito/odin
  with catch_warnings_ignore(Warning):
    n_samples = 120
    prog = Progbar(target=n_samples, print_summary=True,
                   name='Debugging Augmentation')
    for feat in mpi.MPI(jobs=AUG_FILES[:n_samples],
                        func=recipe.transform,
                        ncpu=NCPU, batch=1):
      if np.random.rand() > 0.8:
        feat = {i: j[:1200] if isinstance(j, np.ndarray) else j
                for i, j in feat.items()}
        V.plot_multiple_features(feat, fig_width=20, title=feat['name'])
      prog['name'] = feat['name'][:48]
      prog['dsname'] = feat['dsname']
      prog['dsnoise'] = feat['dsnoise']
      prog.add(1)
    V.plot_save(os.path.join(EXP_DIR, 'debug_%s_%s.pdf' %
                            (FEATURE_RECIPE, AUGMENTATION_NAME)))
    # ====== save the extractor debugging log ====== #
    pp.set_extractor_debug(recipe, debug=True)
    recipe.transform(AUG_FILES[0])
    with open(os.path.join(EXP_DIR, 'debug_%s_%s.log' %
                           (FEATURE_RECIPE, AUGMENTATION_NAME)), 'w') as f:
      for name, step in recipe.steps:
        f.write(step.last_debugging_text)
  exit()
# ===========================================================================
# Run the processor
# ===========================================================================
# ====== basic path ====== #
output_dataset_path = os.path.join(PATH_ACOUSTIC_FEATURES,
                                   '%s_%s' % (FEATURE_RECIPE, AUGMENTATION_NAME))
processor_log_path = os.path.join(EXP_DIR,
コード例 #24
0
            if isinstance(feat, pp.base.ExtractorSignal):
                error_signal.append(feat)
                prog.add(1)
                continue
            prog['spkid'] = feat['spkid']
            prog['name'] = feat['name']
            prog['dsname'] = feat['dsname']
            prog['duration'] = feat['duration']
            prog.add(1)
            # 30% chance plotting
            if rand.rand() < 0.5:
                V.plot_multiple_features(feat,
                                         fig_width=20,
                                         title='[%s]%s' %
                                         (feat['dsname'], feat['name']))
        V.plot_save(os.path.join(EXP_DIR, 'debug_%s.pdf' % FEATURE_RECIPE),
                    dpi=30)
        # ====== save the extractor debugging log ====== #
        pp.set_extractor_debug(recipe, debug=True)
        recipe.transform(samples[0])
        with open(os.path.join(EXP_DIR, 'debug_%s.log' % FEATURE_RECIPE),
                  'w') as f:
            for name, step in recipe.steps:
                f.write(step.last_debugging_text)
            # ====== print error signal ====== #
            for e in error_signal:
                f.write(str(e) + '\n')
                print(e)
    exit()
# ===========================================================================
# Running the extractor
# ===========================================================================
コード例 #25
0
ファイル: helpers.py プロジェクト: imito/odin
def prepare_dnn_data(save_dir, feat_name=None,
                     utt_length=None, seq_mode=None,
                     min_dur=None, min_utt=None,
                     exclude=None, train_proportion=None,
                     return_dataset=False):
  assert os.path.isdir(save_dir), \
      "Path to '%s' is not a directory" % save_dir
  if feat_name is None:
    feat_name = FEATURE_NAME
  if utt_length is None:
    utt_length = int(_args.utt)
  if seq_mode is None:
    seq_mode = str(_args.seq).strip().lower()
  if min_dur is None:
    min_dur = MINIMUM_UTT_DURATION
  if min_utt is None:
    min_utt = MINIMUM_UTT_PER_SPEAKERS
  if exclude is None:
    exclude = str(_args.exclude).strip()
  print("Minimum duration: %s(s)" % ctext(min_dur, 'cyan'))
  print("Minimum utt/spk : %s(utt)" % ctext(min_utt, 'cyan'))
  # ******************** prepare dataset ******************** #
  path = os.path.join(PATH_ACOUSTIC_FEATURES, FEATURE_RECIPE)
  assert os.path.exists(path), "Cannot find acoustic dataset at path: %s" % path
  ds = F.Dataset(path=path, read_only=True)
  rand = np.random.RandomState(seed=Config.SUPER_SEED)
  # ====== find the right feature ====== #
  assert feat_name in ds, "Cannot find feature with name: %s" % feat_name
  X = ds[feat_name]
  ids_name = 'indices_%s' % feat_name
  assert ids_name in ds, "Cannot find indices with name: %s" % ids_name
  # ====== basic path ====== #
  path_filtered_data = os.path.join(save_dir, 'filtered_files.pkl')
  path_train_files = os.path.join(save_dir, 'train_files.pkl')
  path_speaker_info = os.path.join(save_dir, 'speaker_info.pkl')
  # ******************** cannot find cached data ******************** #
  if any(not os.path.exists(p) for p in [path_filtered_data,
                                         path_train_files,
                                         path_speaker_info]):
    # ====== exclude some dataset ====== #
    if len(exclude) > 0:
      exclude_dataset = {i: 1 for i in exclude.split(',')}
      print("* Excluded dataset:", ctext(exclude_dataset, 'cyan'))
      indices = {name: (start, end)
                 for name, (start, end) in ds[ids_name].items()
                 if ds['dsname'][name] not in exclude_dataset}
      # special case exclude all the noise data
      if 'noise' in exclude_dataset:
        indices = {name: (start, end)
                   for name, (start, end) in indices.items()
                   if '/' not in name}
    else:
      indices = {i: j for i, j in ds[ids_name].items()}
    # ====== down-sampling if necessary ====== #
    if _args.downsample > 1000:
      dataset2name = defaultdict(list)
      # ordering the indices so we sample the same set every time
      for name in sorted(indices.keys()):
        dataset2name[ds['dsname'][name]].append(name)
      n_total_files = len(indices)
      n_sample_files = int(_args.downsample)
      # get the percentage of each dataset
      dataset2per = {i: len(j) / n_total_files
                     for i, j in dataset2name.items()}
      # sampling based on percentage
      _ = {}
      for dsname, flist in dataset2name.items():
        rand.shuffle(flist)
        n_dataset_files = int(dataset2per[dsname] * n_sample_files)
        _.update({i: indices[i]
                  for i in flist[:n_dataset_files]})
      indices = _
    # ====== * filter out "bad" sample ====== #
    indices = filter_utterances(X=X, indices=indices, spkid=ds['spkid'],
                                min_utt=min_utt, min_dur=min_dur,
                                remove_min_length=True,
                                remove_min_uttspk=True,
                                n_speakers=None, ncpu=None,
                                save_path=path_filtered_data)
    # ====== all training file name ====== #
    # modify here to train full dataset
    all_name = sorted(indices.keys())
    rand.shuffle(all_name); rand.shuffle(all_name)
    n_files = len(all_name)
    print("#Files:", ctext(n_files, 'cyan'))
    # ====== speaker mapping ====== #
    name2spk = {name: ds['spkid'][name]
                for name in all_name}
    all_speakers = sorted(set(name2spk.values()))
    spk2label = {spk: i
                 for i, spk in enumerate(all_speakers)}
    name2label = {name: spk2label[spk]
                  for name, spk in name2spk.items()}
    assert len(name2label) == len(all_name)
    print("#Speakers:", ctext(len(all_speakers), 'cyan'))
    # ====== stratify sampling based on speaker ====== #
    valid_name = []
    # create speakers' cluster
    label2name = defaultdict(list)
    for name, label in sorted(name2label.items(),
                              key=lambda x: x[0]):
      label2name[label].append(name)
    # for each speaker with >= 3 utterance
    for label, name_list in sorted(label2name.items(),
                                   key=lambda x: x[0]):
      if len(name_list) < 3:
        continue
      n = max(1, int(0.05 * len(name_list))) # 5% for validation
      valid_name += rand.choice(a=name_list, size=n, replace=False).tolist()
    # train list is the rest
    _ = set(valid_name)
    train_name = [i for i in all_name if i not in _]
    # ====== split training and validation ====== #
    train_indices = {name: indices[name] for name in train_name}
    valid_indices = {name: indices[name] for name in valid_name}
    # ====== save cached data ====== #
    with open(path_train_files, 'wb') as fout:
      pickle.dump({'train': train_indices, 'valid': valid_indices},
                  fout)
    with open(path_speaker_info, 'wb') as fout:
      pickle.dump({'all_speakers': all_speakers,
                   'name2label': name2label,
                   'spk2label': spk2label},
                  fout)
  # ******************** load cached data ******************** #
  else:
    with open(path_train_files, 'rb') as fin:
      obj = pickle.load(fin)
      train_indices = obj['train']
      valid_indices = obj['valid']
    with open(path_speaker_info, 'rb') as fin:
      obj = pickle.load(fin)
      all_speakers = obj['all_speakers']
      name2label = obj['name2label']
      spk2label = obj['spk2label']

  # ******************** print log ******************** #
  def summary_indices(ids):
    datasets = defaultdict(int)
    speakers = defaultdict(list)
    text = ''
    for name in sorted(ids.keys()):
      text += name + str(ids[name])
      dsname = ds['dsname'][name]
      datasets[dsname] += 1
      speakers[dsname].append(ds['spkid'][name])
    for dsname in sorted(datasets.keys()):
      print('  %-18s: %s(utt) %s(spk)' % (
          dsname,
          ctext('%6d' % datasets[dsname], 'cyan'),
          ctext(len(set(speakers[dsname])), 'cyan')))
    print('  MD5 checksum:', ctext(crypto.md5_checksum(text), 'lightcyan'))
  # ====== training files ====== #
  print("#Train files:", ctext('%-8d' % len(train_indices), 'cyan'),
        "#spk:", ctext(len(set(name2label[name]
                               for name in train_indices.keys())), 'cyan'),
        "#noise:", ctext(len([name for name in train_indices.keys()
                              if '/' in name]), 'cyan'))
  summary_indices(ids=train_indices)
  # ====== valid files ====== #
  print("#Valid files:", ctext('%-8d' % len(valid_indices), 'cyan'),
        "#spk:", ctext(len(set(name2label[name]
                               for name in valid_indices.keys())), 'cyan'),
        "#noise:", ctext(len([name for name in valid_indices.keys()
                              if '/' in name]), 'cyan'))
  summary_indices(ids=valid_indices)
  # ******************** create the recipe ******************** #
  assert all(name in name2label
             for name in train_indices.keys())
  assert all(name in name2label
            for name in valid_indices.keys())
  recipes = prepare_dnn_feeder_recipe(name2label=name2label,
                                      n_speakers=len(all_speakers),
                                      utt_length=utt_length, seq_mode=seq_mode)
  # ====== downsample training set for analyzing if required ====== #
  if train_proportion is not None:
    assert 0 < train_proportion < 1
    n_training = len(train_indices)
    train_indices = list(train_indices.items())
    rand.shuffle(train_indices); rand.shuffle(train_indices)
    train_indices = dict(train_indices[:int(n_training * train_proportion)])
  # ====== create feeder ====== #
  train_feeder = F.Feeder(
      data_desc=F.IndexedData(data=X,
                              indices=train_indices),
      batch_mode='batch', ncpu=NCPU, buffer_size=256)

  valid_feeder = F.Feeder(
      data_desc=F.IndexedData(data=X,
                              indices=valid_indices),
      batch_mode='batch', ncpu=max(2, NCPU // 4), buffer_size=64)

  train_feeder.set_recipes(recipes)
  valid_feeder.set_recipes(recipes)
  print(train_feeder)
  print(valid_feeder)
  # ====== debugging ====== #
  if IS_DEBUGGING:
    import matplotlib
    matplotlib.use('Agg')
    prog = Progbar(target=len(valid_feeder), print_summary=True,
                   name="Iterating validation set")
    samples = []
    n_visual = 250
    for name, idx, X, y in valid_feeder.set_batch(batch_size=100000,
                                                  batch_mode='file',
                                                  seed=None, shuffle_level=0):
      assert idx == 0, "Utterances longer than %.2f(sec)" % (100000 * Config.STEP_LENGTH)
      prog['X'] = X.shape
      prog['y'] = y.shape
      prog.add(X.shape[0])
      # random sampling
      if rand.rand(1) < 0.5 and len(samples) < n_visual:
        for i in rand.randint(0, X.shape[0], size=4, dtype='int32'):
          samples.append((name, X[i], np.argmax(y[i], axis=-1)))
    # plot the spectrogram
    n_visual = len(samples)
    V.plot_figure(nrow=n_visual, ncol=8)
    for i, (name, X, y) in enumerate(samples):
      is_noise = '/' in name
      assert name2label[name] == y, "Speaker label mismatch for file: %s" % name
      name = name.split('/')[0]
      dsname = ds['dsname'][name]
      spkid = ds['spkid'][name]
      y = np.argmax(y, axis=-1)
      ax = V.plot_spectrogram(X.T,
                              ax=(n_visual, 1, i + 1),
                              title='#%d' % (i + 1))
      ax.set_title('[%s][%s]%s  %s' %
                   ('noise' if is_noise else 'clean', dsname, name, spkid),
                   fontsize=6)
    # don't need to be high resolutions
    V.plot_save('/tmp/tmp.pdf', dpi=12)
    exit()
  # ====== return ====== #
  if bool(return_dataset):
    return train_feeder, valid_feeder, all_speakers, ds
  return train_feeder, valid_feeder, all_speakers
コード例 #26
0
ファイル: analyze_data.py プロジェクト: imito/odin
with catch_warnings_ignore(RuntimeWarning), catch_warnings_ignore(FutureWarning):
  data_map = {}
  stats_map = {}
  spk_map = {}
  for dsname, text, data, stats, spk_stats in mpi.MPI(jobs=all_dataset, func=dataset_statistics,
                            ncpu=None, batch=1):
    data_map[dsname] = data
    stats_map[dsname] = stats
    spk_map[dsname] = spk_stats
    print(text)

  for dsname in all_dataset:
    print("Plotting ...", ctext(dsname, 'cyan'))
    data = data_map[dsname]
    V.plot_figure(nrow=2, ncol=20)
    ax = plt.subplot(1, n_col, 1)
    plot_histogram(data[0], ax, title="Duration")

    ax = plt.subplot(1, n_col, 2)
    plot_histogram(data[1]['sum_per_spk'], ax, title="Dur/Spk")

    ax = plt.subplot(1, n_col, 3)
    plot_histogram(data[1]['nutt_per_spk'], ax, title="#Utt/Spk")

    plt.suptitle(dsname, fontsize=8)

  plot_mean_std(_map=stats_map, title='Data')
  plot_mean_std(_map=spk_map, title='Speaker')

V.plot_save(figure_path, dpi=32)
コード例 #27
0
ファイル: hyperparams.py プロジェクト: trungnt13/odin-ai
def evaluate(vae,
             ds,
             expdir: str,
             title: str,
             batch_size: int = 32,
             seed: int = 1):
    from odin.bay.vi import Correlation
    rand = np.random.RandomState(seed=seed)
    if not os.path.exists(expdir):
        os.makedirs(expdir)
    tanh = True if ds.name.lower() == 'celeba' else False
    ## data for training semi-supervised
    # careful don't allow any data leakage!
    train = ds.create_dataset('train',
                              batch_size=batch_size,
                              label_percent=True,
                              shuffle=False,
                              normalize='tanh' if tanh else 'probs')
    data = [(vae.encode(x, training=False), y) \
      for x, y in tqdm(train, desc=title)]
    x_semi_train = tf.concat(
        [tf.concat([i.mean(), _ymean(j)], axis=1) for (i, j), _ in data],
        axis=0).numpy()
    y_semi_train = tf.concat([i for _, i in data], axis=0).numpy()
    # shuffle
    ids = rand.permutation(x_semi_train.shape[0])
    x_semi_train = x_semi_train[ids]
    y_semi_train = y_semi_train[ids]
    ## data for testing
    test = ds.create_dataset('test',
                             batch_size=batch_size,
                             label_percent=True,
                             shuffle=False,
                             normalize='tanh' if tanh else 'probs')
    prog = tqdm(test, desc=title)
    llk_x = []
    llk_y = []
    z = []
    y_true = []
    y_pred = []
    x_true = []
    x_pred = []
    x_org, x_rec = [], []
    for x, y in prog:
        px, (qz, qy) = vae(x, training=False)
        y_true.append(y)
        y_pred.append(_ymean(qy))
        z.append(qz.mean())
        llk_x.append(px.log_prob(x))
        llk_y.append(qy.log_prob(y))
        if rand.uniform() < 0.005 or len(x_org) < 2:
            x_org.append(x)
            x_rec.append(px.mean())
    ## llk
    llk_x = tf.reduce_mean(tf.concat(llk_x, axis=0)).numpy()
    llk_y = tf.reduce_mean(tf.concat(llk_y, axis=0)).numpy()
    ## the latents
    z = tf.concat(z, axis=0).numpy()
    y_true = tf.concat(y_true, axis=0).numpy()
    y_pred = tf.concat(y_pred, axis=0).numpy()
    x_semi_test = tf.concat([z, y_pred], axis=-1).numpy()
    # shuffle
    ids = rand.permutation(z.shape[0])
    z = z[ids]
    y_true = y_true[ids]
    y_pred = y_pred[ids]
    x_semi_test = x_semi_test[ids]
    ## saving reconstruction images
    x_org = tf.concat(x_org, axis=0).numpy()
    x_rec = tf.concat(x_rec, axis=0).numpy()
    ids = rand.permutation(x_org.shape[0])
    x_org = x_org[ids][:36]
    x_rec = x_rec[ids][:36]
    vmin = x_rec.reshape((36, -1)).min(axis=1).reshape((36, 1, 1, 1))
    vmax = x_rec.reshape((36, -1)).max(axis=1).reshape((36, 1, 1, 1))
    if tanh:
        x_org = (x_org + 1.) / 2.
    x_rec = (x_rec - vmin) / (vmax - vmin)
    if x_org.shape[-1] == 1:  # grayscale image
        x_org = np.squeeze(x_org, -1)
        x_rec = np.squeeze(x_rec, -1)
    else:  # color image
        x_org = np.transpose(x_org, (0, 3, 1, 2))
        x_rec = np.transpose(x_rec, (0, 3, 1, 2))
    plt.figure(figsize=(15, 8))
    ax = plt.subplot(1, 2, 1)
    vs.plot_images(x_org, grids=(6, 6), ax=ax, title='Original')
    ax = plt.subplot(1, 2, 2)
    vs.plot_images(x_rec, grids=(6, 6), ax=ax, title='Reconstructed')
    plt.tight_layout()
    ## prepare the labels
    if ds.name in ('mnist', 'fashionmnist', 'celeba'):
        true = np.argmax(y_true, axis=-1)
        pred = np.argmax(y_pred, axis=-1)
        y_semi_train = np.argmax(y_semi_train, axis=-1)
        y_semi_test = true
        labels_name = ds.labels
    else:  # shapes3d dsprites
        true = y_true[:, 2].astype(np.int32)
        pred = y_pred[:, 2].astype(np.int32)
        y_semi_train = y_semi_train[:, 2].astype(np.int32)
        y_semi_test = true
        if ds.name == 'shapes3d':
            labels_name = ['cube', 'cylinder', 'sphere', 'round']
        elif ds.name == 'dsprites':
            labels_name = ['square', 'ellipse', 'heart']
    plt.figure(figsize=(8, 8))
    vs.plot_confusion_matrix(cm=confusion_matrix(y_true=true, y_pred=pred),
                             labels=labels_name,
                             cbar=True,
                             fontsize=10,
                             title=title)
    labels = np.array([labels_name[i] for i in true])
    labels_pred = np.array([labels_name[i] for i in pred])
    ## save arrays for later inspectation
    np.savez_compressed(f'{expdir}/arrays',
                        x_train=x_semi_train,
                        y_train=y_semi_train,
                        x_test=x_semi_test,
                        y_test=y_semi_test,
                        zdim=z.shape[1],
                        labels=labels_name)
    print(f'Export arrays to "{expdir}/arrays.npz"')
    ## semi-supervised
    with open(f'{expdir}/results.txt', 'w') as f:
        print(f'Export results to "{expdir}/results.txt"')
        f.write(f'Steps: {vae.step.numpy()}\n')
        f.write(f'llk_x: {llk_x}\n')
        f.write(f'llk_y: {llk_y}\n')
        for p in [0.004, 0.06, 0.2, 0.99]:
            x_train, x_test, y_train, y_test = train_test_split(
                x_semi_train,
                y_semi_train,
                train_size=int(np.round(p * x_semi_train.shape[0])),
                random_state=1,
            )
            m = LogisticRegression(max_iter=3000, random_state=1)
            m.fit(x_train, y_train)
            # write the report
            f.write(f'{m.__class__.__name__} Number of labels: '
                    f'{p} {x_train.shape[0]}/{x_test.shape[0]}')
            f.write('\nValidation:\n')
            f.write(
                classification_report(y_true=y_test, y_pred=m.predict(x_test)))
            f.write('\nTest:\n')
            f.write(
                classification_report(y_true=y_semi_test,
                                      y_pred=m.predict(x_semi_test)))
            f.write('------------\n')
    ## scatter plot
    n_points = 4000
    # tsne plot
    tsne = DimReduce.TSNE(z[:n_points], n_components=2)
    kw = dict(x=tsne[:, 0], y=tsne[:, 1], grid=False, size=12.0, alpha=0.6)
    plt.figure(figsize=(8, 8))
    vs.plot_scatter(color=labels[:n_points], title=f'[True-tSNE]{title}', **kw)
    plt.figure(figsize=(8, 8))
    vs.plot_scatter(color=labels_pred[:n_points],
                    title=f'[Pred-tSNE]{title}',
                    **kw)
    # pca plot
    pca = DimReduce.PCA(z, n_components=2)
    kw = dict(x=pca[:, 0], y=pca[:, 1], grid=False, size=12.0, alpha=0.6)
    plt.figure(figsize=(8, 8))
    vs.plot_scatter(color=labels, title=f'[True-PCA]{title}', **kw)
    plt.figure(figsize=(8, 8))
    vs.plot_scatter(color=labels_pred, title=f'[Pred-PCA]{title}', **kw)
    ## factors plot
    corr = (Correlation.Spearman(z, y_true) +
            Correlation.Pearson(z, y_true)) / 2.
    best_z = np.argsort(np.abs(corr), axis=0)[-2:]
    style = dict(size=15.0, alpha=0.6, grid=False)
    for fi, (z1, z2) in enumerate(best_z.T):
        plt.figure(figsize=(8, 4))
        ax = plt.subplot(1, 2, 1)
        vs.plot_scatter(x=z[:n_points, z1],
                        y=z[:n_points, z2],
                        val=y_true[:n_points, fi],
                        ax=ax,
                        title=ds.labels[fi],
                        **style)
        ax = plt.subplot(1, 2, 2)
        vs.plot_scatter(x=z[:n_points, z1],
                        y=z[:n_points, z2],
                        val=y_pred[:n_points, fi],
                        ax=ax,
                        title=ds.labels[fi],
                        **style)
        plt.tight_layout()
    ## save all plot
    vs.plot_save(f'{expdir}/analysis.pdf', dpi=180, verbose=True)
コード例 #28
0
plt.plot(py, llk, label='SemafoVAE')
plt.plot([py[0], py[-1]], [-3464.40, -3464.40],
         label='VAE baseline',
         color='r')
plt.gca().set_xscale('log')
plt.xticks(py, [str(i) for i in py], rotation=-30)
plt.legend(fontsize=8)
plt.xlabel('Supervision rate')
plt.title('Test log-likelihood')

plt.subplot(1, 3, 2)
plt.plot(py, fid, label='SemafoVAE')
plt.plot([py[0], py[-1]], [74.57, 74.57], label='VAE baseline', color='r')
plt.gca().set_xscale('log')
plt.xticks(py, [str(i) for i in py], rotation=-30)
plt.legend(fontsize=8)
plt.xlabel('Supervision rate')
plt.title('FID')

plt.subplot(1, 3, 3)
plt.plot(py, dci, label='SemafoVAE')
plt.plot([py[0], py[-1]], [64.82, 64.82], label='VAE baseline', color='r')
plt.gca().set_xscale('log')
plt.xticks(py, [str(i) for i in py], rotation=-30)
plt.legend(fontsize=8)
plt.xlabel('Supervision rate')
plt.title('DCI')

plt.tight_layout()
vs.plot_save(verbose=True)
コード例 #29
0
from odin import visual as vs

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

tf.random.set_seed(8)
np.random.seed(8)

X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

X_umap = ml.fast_umap(X_train, X_test)
X_tsne = ml.fast_tsne(X_train, X_test)
X_pca = ml.fast_pca(X_train, X_test, n_components=2)

styles = dict(size=12, alpha=0.6, centroids=True)

vs.plot_figure(6, 12)
vs.plot_scatter(x=X_pca[0], color=y_train, ax=(1, 2, 1), **styles)
vs.plot_scatter(x=X_pca[1], color=y_test, ax=(1, 2, 2), **styles)

vs.plot_figure(6, 12)
vs.plot_scatter(x=X_tsne[0], color=y_train, ax=(1, 2, 1), **styles)
vs.plot_scatter(x=X_tsne[1], color=y_test, ax=(1, 2, 2), **styles)

vs.plot_figure(6, 12)
vs.plot_scatter(x=X_umap[0], color=y_train, ax=(1, 2, 1), **styles)
vs.plot_scatter(x=X_umap[1], color=y_test, ax=(1, 2, 2), **styles)

vs.plot_save()
コード例 #30
0
from sklearn.manifold import TSNE
from odin.utils import UnitTimer, TemporaryDirectory

iris = F.load_iris()
print(iris)
pca = MiniBatchPCA()

X = iris['X'][:]

i = 0
while i < X.shape[0]:
    x = X[i:i + 20]
    i += 20
    pca.partial_fit(x)
    print("Fitting PCA ...")

with UnitTimer():
    for i in range(8):
        x = pca.transform(X)

with UnitTimer():
    for i in range(8):
        x = pca.transform_mpi(X, keep_order=True, ncpu=1, n_components=2)
print("Output shape:", x.shape)

colors = ['r' if i == 0 else ('b' if i == 1 else 'g')
          for i in iris['y'][:]]
visual.plot_scatter(x[:, 0], x[:, 1], color=colors, size=8)
visual.plot_save('/tmp/tmp.pdf')
# bananab
コード例 #31
0
ファイル: processor.py プロジェクト: professorlust/odin-ai
def validate_features(ds_or_processor,
                      path,
                      nb_samples=25,
                      override=False,
                      seed=12082518,
                      fig_width=4):
    # TODO: add PCA visualization
    # TODO: update to match new indices style
    def logger(title, tag, check):
        check = bool(check)
        text_color = 'yellow' if check else 'red'
        print(ctext('   *', 'cyan'), ctext(str(title), text_color),
              ctext(str(tag), 'magenta'),
              ctext("✓", text_color) if check else ctext("✗", text_color))

    import matplotlib
    matplotlib.use('Agg')
    from odin.visual import plot_save, plot_multiple_features
    # ====== check path to dataset ====== #
    should_close_ds = True
    if isinstance(ds_or_processor, FeatureProcessor):
        ds = Dataset(ds_or_processor.path, read_only=True)
    elif is_string(ds_or_processor):
        ds = Dataset(ds_or_processor, read_only=True)
    elif isinstance(ds_or_processor, Dataset):
        ds = ds_or_processor
        should_close_ds = False
    else:
        raise ValueError("`ds` can be None, string, or Dataset. No "
                         "support for given input type: %s" % str(type(ds)))
    print(ctext('Validating dataset:', 'yellow'), '"%s"' % ds.path)
    # ====== extract the config of the dataset ====== #
    if 'config' not in ds:
        raise RuntimeError(
            "The `Dataset` must be generated by `FeatureProcessor` "
            "which must contain `config` MmapDict of extracted "
            "features configuration.")
    # config = ds['config']
    # pipeline = ds['pipeline']
    # ====== output path ====== #
    path = str(path)
    if not os.path.exists(path):
        os.mkdir(path)
    elif override:
        if os.path.isfile(path):
            os.remove(path)
        else:
            shutil.rmtree(path)
        os.mkdir(path)
    else:
        raise ValueError("`path`=%s exists, cannot override." % path)
    prev_stdio = get_stdio_path()
    stdio(path=os.path.join(path, 'log.txt'))
    nb_samples = int(nb_samples)
    # ====== get all features ====== #
    # [(name, dtype, statistic-able), ...]
    all_keys = [k for k in ds.keys() if k not in ('config', 'pipeline')]
    # store all features (included the features in external_indices
    all_features = []
    # the external indices can be: indices_mfcc_bnf
    external_indices = flatten_list([
        k.split('_')[1:] for k in all_keys if 'indices' in k and k != 'indices'
    ])
    # ====== checking indices ====== #
    main_indices = {
        name: (start, end)
        for name, (start, end) in ds['indices'].items()
    }
    for ids_name in (k for k in all_keys if 'indices' in k):
        ids = sorted([(name, start, end)
                      for name, (start, end) in ds[ids_name].items()],
                     key=lambda x: x[1])
        for prev, now in zip(ids, ids[1:]):
            assert prev[2] == now[1], "Zero length in indices"
            assert prev[2] - prev[1] > 0, "Zero length in indices"
            assert now[2] - now[1] > 0, "Zero length in indices"
        # final length match length of Data
        if ids_name != 'indices':
            for feat_name in ids_name.split('_')[1:]:
                assert now[-1] == len(ds[feat_name]), \
                    "Indices and data length mismatch, indices:'%s' feat:'%s'" % \
                    (ids_name, feat_name)
                all_features.append(feat_name)
        else:
            for feat_name in all_keys:
                if feat_name not in external_indices and \
                'sum1' != feat_name[-4:] and 'sum2' != feat_name[-4:] and \
                'mean' != feat_name[-4:] and 'std' != feat_name[-3:] and \
                isinstance(ds[feat_name], MmapData):
                    assert now[-1] == len(ds[feat_name]), \
                    "Length of indices and actual data mismatch, " + ids_name + ':' + feat_name
                    all_features.append(feat_name)
        # logging
        logger("Checked all:", ids_name, True)
    # ====== check all dictionary types ====== #
    for name in all_keys:
        if isinstance(ds[name], MmapDict) and 'indices' not in name:
            data = ds[name]
            # special cases
            if name == 'sr':
                checking_func = lambda x: x > 0  # for sr
            else:
                checking_func = lambda x: True
            # check
            for key, val in data.items():
                assert key in main_indices, \
                "Dictionary with name:'%s' has key not found in indices." % name
                assert checking_func(val)
            logger("Checked dictionary: ", name, True)
    # ====== checking each type of data ====== #
    # get all stats name
    all_stats = defaultdict(list)
    for k in all_keys:
        if 'sum1' == k[-4:] or 'sum2' == k[-4:] or \
        'mean' == k[-4:] or 'std' == k[-3:]:
            all_stats[k[:-4].split('_')[0]].append(k)
    # get all pca name
    all_pca = {i: i + '_pca' for i in all_features if i + '_pca' in ds}
    # checking one-by-one numpy.ndarray features array
    for feat_name in all_features:
        dtype = str(ds[feat_name].dtype)
        # checking all data
        indices = ds.find_prefix(feat_name, 'indices')
        prog = Progbar(target=len(indices),
                       interval=0.1,
                       print_report=True,
                       name='Checking: %s(%s)' % (feat_name, dtype))
        # start iterating over all data file
        fail_test = False
        for file_name, (start, end) in indices:
            dat = ds[feat_name][start:end]
            # No NaN value
            if np.any(np.isnan(dat)):
                logger("NaN values", file_name + ':' + feat_name, False)
                fail_test = True
            # not all value closed to zeros
            if np.all(np.isclose(dat, 0.)):
                logger("All-closed-zeros values", file_name + ':' + feat_name,
                       False)
                fail_test = True
            prog['Name'] = file_name
            prog.add(1)
        if not fail_test:
            logger("Check data incredibility for: ", feat_name, True)
        # checking statistics
        if feat_name in all_stats:
            fail_test = False
            for stat_name in all_stats[feat_name]:
                X = ds[stat_name]
                if X.ndim >= 1:
                    X = X[:]
                if np.any(np.isnan(X)):
                    logger("NaN values", feat_name + ':' + stat_name, False)
                    fail_test = True
                if np.all(np.isclose(X, 0.)):
                    logger("All-closed-zeros values",
                           feat_name + ':' + stat_name, False)
                    fail_test = True
            if not fail_test:
                logger("Check statistics for: ", feat_name, True)
        # check PCA
        if feat_name in all_pca:
            pca = ds[all_pca[feat_name]]
            n = ds[feat_name].shape[0]
            nb_feats = ds[feat_name].shape[-1]
            fail_test = False
            # performing PCA on random samples
            for i in range(nb_samples):
                start = np.random.randint(0, n - nb_samples - 1)
                X = pca.transform(ds[feat_name][start:(start + nb_samples)],
                                  n_components=max(nb_feats // 2, 1))
                if np.any(np.isnan(X)):
                    logger("NaN values in PCA", feat_name, False)
                    fail_test = True
                    break
                if np.all(np.isclose(X, 0.)):
                    logger("All-closed-zeros values in PCA", feat_name, False)
                    fail_test = True
                    break
            if not fail_test:
                logger("Check PCA for: ", feat_name, True)
    # ====== Do sampling ====== #
    np.random.seed(seed)  # seed for reproceducible
    all_samples = np.random.choice(list(ds['indices'].keys()),
                                   size=nb_samples,
                                   replace=False)
    # plotting all samples
    for sample_id, file_name in enumerate(all_samples):
        X = {}
        for feat_name in all_features:
            start, end = ds.find_prefix(feat_name, 'indices')[file_name]
            feat = ds[feat_name][start:end]
            X[feat_name] = feat
            # some special handling
            try:
                _special_cases(X=feat,
                               feat_name=feat_name,
                               file_name=file_name,
                               ds=ds,
                               path=path)
            except Exception as e:
                logger("Special case error: %s" % str(e),
                       file_name + ':' + feat_name, False)
        plot_multiple_features(X, title=file_name, fig_width=fig_width)
        figure_path = os.path.join(path,
                                   '%s.pdf' % _escape_file_name(file_name))
        plot_save(figure_path, log=False, clear_all=True)
        logger("Sample figure saved at: ", figure_path, True)
    # plotting the statistic
    figure_path = os.path.join(path, 'stats.pdf')
    for feat_name, stat_name in all_stats.items():
        X = {name: ds[name][:] for name in stat_name if ds[name].ndim >= 1}
        if len(X) > 0:
            plot_multiple_features(X, title=feat_name, fig_width=fig_width)
    plot_save(figure_path, log=False, clear_all=True)
    logger("Stats figure save at: ", figure_path, True)
    logger("All reports at folder: ", os.path.abspath(path), True)
    # ====== cleaning ====== #
    stdio(path=prev_stdio)
    if should_close_ds:
        ds.close()
コード例 #32
0
ファイル: tvec.py プロジェクト: imito/odin
# ===========================================================================
y_pred_proba, Z1_test, Z2_test, Z3_test = make_dnn_prediction(
    functions=[f_pred_proba, f_z1, f_z2, f_z3], X=X_test_data, title='TEST')
print("Test Latent:", Z1_test.shape, Z2_test.shape, Z3_test.shape)
y_pred = np.argmax(y_pred_proba, axis=-1)
evaluate(y_true=X_test_true, y_pred_proba=y_pred_proba, labels=labels,
         title="Test set (Deep prediction)",
         path=os.path.join(EXP_DIR, 'test_deep.pdf'))
# ====== make a streamline classifier ====== #
# training PLDA
Z3_train, y_train = make_dnn_prediction(f_z3, X=train, title="TRAIN")
print("Z3_train:", Z3_train.shape, y_train.shape)
Z3_valid, y_valid = make_dnn_prediction(f_z3, X=valid, title="VALID")
print("Z3_valid:", Z3_valid.shape, y_valid.shape)
plda = PLDA(n_phi=200, random_state=K.get_rng().randint(10e8),
            n_iter=12, labels=labels, verbose=0)
plda.fit(np.concatenate([Z3_train, Z3_valid], axis=0),
         np.concatenate([y_train, y_valid], axis=0))
y_pred_log_proba = plda.predict_log_proba(Z3_test)
evaluate(y_true=X_test_true, y_pred_log_proba=y_pred_log_proba, labels=labels,
         title="Test set (PLDA - Latent prediction)",
         path=os.path.join(EXP_DIR, 'test_latent.pdf'))
# ====== visualize ====== #
visualize_latent_space(X_org=X_test_data, X_latent=Z1_test,
                       name=X_test_name, labels=X_test_true,
                       title="latent1")
visualize_latent_space(X_org=X_test_data, X_latent=Z2_test,
                       name=X_test_name, labels=X_test_true,
                       title="latent2")
V.plot_save(os.path.join(EXP_DIR, 'latent.pdf'))
コード例 #33
0
                df = pickle.load(f)
        print(df)
        #
        plt.figure(figsize=(6, 5), dpi=150)
        sns.scatterplot(x='beta',
                        y='llk',
                        hue='finetune',
                        data=df,
                        alpha=0.5,
                        s=80)
        plt.gca().set_xscale('log')
        plt.xticks(BETA, [f'{b:g}' for b in BETA])
        #
        n_images = len(df)
        n_col = 10
        n_row = int(np.ceil(n_images / 10))
        plt.figure(figsize=(1.5 * n_col, 1.5 * n_row), dpi=150)
        for i, (beta, gamma, zdim, finetune, step, llk,
                image) in enumerate(df.values):
            plt.subplot(n_row, n_col, i + 1)
            plt.imshow(image, cmap='Greys_r')
            plt.axis('off')
            plt.title(
                f'b={beta} g={gamma} z={zdim} t={"T" if finetune else "F"}',
                fontsize=8)
        plt.tight_layout()
        vs.plot_save(os.path.join(PATH, 'figures.pdf'), verbose=True)
    # === 3. no support
    else:
        raise NotImplementedError
コード例 #34
0
ファイル: gmm_fitting.py プロジェクト: imito/odin
                device='gpu')
      gmm.initialize(X)
      print(gmm)
      gmm.fit(X)
      # ====== match each components to closest mean ====== #
      gmm_mean = [None] * nmix
      gmm_sigma = [None] * nmix
      for mean, sigma in zip(gmm.mean.T, gmm.sigma.T):
        sigma = np.diag(sigma)
        distance = sorted([(i, np.sqrt(np.sum((m - mean)**2)))
                           for i, m in enumerate(stats_mean)],
                          key=lambda x: x[1])
        for i, dist in distance:
          if gmm_mean[i] is None:
            gmm_mean[i] = mean
            gmm_sigma[i] = sigma
            break
      # ====== plot everything ====== #
      plt.figure()
      colors = V.generate_random_colors(n=nmix)
      for i in range(nmix):
        c = colors[i]
        dat = y[i]
        sigma = gmm_sigma[i]
        plt.scatter(dat[:, 0], dat[:, 1], c=c, s=0.5)
        V.plot_ellipses(gmm_mean[i], gmm_sigma[i], alpha=0.5, color=c)
        V.plot_ellipses(stats_mean[i], stats_sigma[i], alpha=0.3, color='red')
      plt.suptitle('#iter:%d stochastic:%s downsample:%d ' %
        (niter, stochastic, downsample))
V.plot_save(pdf_path)
コード例 #35
0
# ===========================================================================
extractor = get_module_from_path(identifier=str(args.recipe),
                                 prefix='feature_recipes',
                                 path=get_script_path())
assert len(extractor) > 0, \
"Cannot find any recipe with name: '%s' from path: '%s'" % (args.recipe, get_script_path())
recipe = extractor[0](DEBUG)
# ====== debugging ====== #
if DEBUG:
  with np.warnings.catch_warnings():
    np.warnings.filterwarnings('ignore')
    for path, name in SAMPLED_WAV_FILE:
      feat = recipe.transform(path)
      assert feat['bnf'].shape[0] == feat['mspec'].shape[0]
      V.plot_multiple_features(feat, title=feat['name'])
    V.plot_save(os.path.join(PATH_EXP, 'features_%s.pdf' % args.recipe))
    exit()
# ===========================================================================
# Prepare the processor
# ===========================================================================
with np.warnings.catch_warnings():
  np.warnings.filterwarnings('ignore')
  jobs = list(WAV_FILES.keys())
  processor = pp.FeatureProcessor(jobs=jobs,
      path=os.path.join(PATH_ACOUSTIC_FEAT, args.recipe),
      extractor=recipe,
      n_cache=1200,
      ncpu=min(18, cpu_count() - 2),
      override=True,
      identifier='name',
      log_path=os.path.join(PATH_EXP, 'processor_%s.log' % args.recipe),
コード例 #36
0
ファイル: compare_vaes.py プロジェクト: trungnt13/odin-ai
def evaluate(vae: VariationalAutoencoder,
             ds: ImageDataset,
             expdir: str,
             title: str,
             batch_size: int = 64,
             take_count: int = -1,
             n_images: int = 36,
             seed: int = 1):
    n_rows = int(np.sqrt(n_images))
    is_semi = vae.is_semi_supervised()
    is_hierarchical = vae.is_hierarchical()
    ds_kw = dict(batch_size=batch_size, label_percent=1.0, shuffle=False)
    ## prepare
    rand = np.random.RandomState(seed=seed)
    if not os.path.exists(expdir):
        os.makedirs(expdir)
    ## data for training semi-supervised
    train = ds.create_dataset('train', **ds_kw)
    (llkx_train, llky_train, x_org_train, x_rec_train, y_true_train,
     y_pred_train, z_train, pz_train) = _call(vae,
                                              ds=train,
                                              rand=rand,
                                              take_count=take_count,
                                              n_images=n_images,
                                              verbose=True)
    ## data for testing
    test = ds.create_dataset('test', **ds_kw)
    (llkx_test, llky_test, x_org_test, x_rec_test, y_true_test, y_pred_test,
     z_test, pz_test) = _call(vae,
                              ds=test,
                              rand=rand,
                              take_count=take_count,
                              n_images=n_images,
                              verbose=True)
    # === 0. plotting latent-factor pairs
    for idx, z in enumerate(z_test):
        z = z.mean()
        f = y_true_test
        corr_mat = Correlation.Spearman(z, f)  # [n_latents, n_factors]
        plot_latents_pairs(z, f, corr_mat, ds.labels)
        vs.plot_save(f'{expdir}/latent{idx}_factor.pdf', dpi=100, verbose=True)
    # === 0. latent traverse plot
    x_travs = x_org_test
    if x_travs.ndim == 3:  # grayscale image
        x_travs = np.expand_dims(x_travs, -1)
    else:  # color image
        x_travs = np.transpose(x_travs, (0, 2, 3, 1))
    x_travs = x_travs[rand.permutation(x_travs.shape[0])]
    n_visual_samples = 5
    n_traverse_points = 21
    n_top_latents = 10
    plt.figure(figsize=(8, 3 * n_visual_samples))
    for i in range(n_visual_samples):
        images = vae.sample_traverse(x_travs[i:i + 1],
                                     min_val=-np.min(z_test[0].mean()),
                                     max_val=np.max(z_test[0].mean()),
                                     n_best_latents=n_top_latents,
                                     n_traverse_points=n_traverse_points,
                                     mode='linear')
        images = as_tuple(images)[0]
        images = _prepare_images(images.mean().numpy(), normalize=True)
        vs.plot_images(images,
                       grids=(n_top_latents, n_traverse_points),
                       ax=(n_visual_samples, 1, i + 1))
        if i == 0:
            plt.title('Latents traverse')
    plt.tight_layout()
    vs.plot_save(f'{expdir}/latents_traverse.pdf', dpi=180, verbose=True)
    # === 0. prior sampling plot
    images = as_tuple(vae.sample_observation(n=n_images, seed=seed))[0]
    images = _prepare_images(images.mean().numpy(), normalize=True)
    plt.figure(figsize=(5, 5))
    vs.plot_images(images, grids=(n_rows, n_rows), title='Sampled')
    # === 1. reconstruction plot
    plt.figure(figsize=(15, 15))
    vs.plot_images(x_org_train,
                   grids=(n_rows, n_rows),
                   ax=(2, 2, 1),
                   title='[Train]Original')
    vs.plot_images(x_rec_train,
                   grids=(n_rows, n_rows),
                   ax=(2, 2, 2),
                   title='[Train]Reconstructed')
    vs.plot_images(x_org_test,
                   grids=(n_rows, n_rows),
                   ax=(2, 2, 3),
                   title='[Test]Original')
    vs.plot_images(x_rec_test,
                   grids=(n_rows, n_rows),
                   ax=(2, 2, 4),
                   title='[Test]Reconstructed')
    plt.tight_layout()
    ## prepare the labels
    label_type = ds.label_type
    if label_type == 'categorical':
        labels_name = ds.labels
        true = np.argmax(y_true_test, axis=-1)
        labels_true = np.array([labels_name[i] for i in true])
        labels_pred = labels_true
        if is_semi:
            pred = np.argmax(y_pred_test.mean().numpy(), axis=-1)
            labels_pred = np.array([labels_name[i] for i in pred])
    elif label_type == 'factor':  # dsprites, shapes3d
        labels_name = ['cube', 'cylinder', 'sphere', 'round'] \
          if 'shapes3d' in ds.name else ['square', 'ellipse', 'heart']
        true = y_true_test[:, 2].astype('int32')
        labels_true = np.array([labels_name[i] for i in true])
        labels_pred = labels_true
        if is_semi:
            pred = get_ymean(y_pred_test)[:, 2].astype('int32')
            labels_pred = np.array([labels_name[i] for i in pred])
    else:  # CelebA
        raise NotImplementedError
    ## confusion matrix
    if is_semi:
        plt.figure(figsize=(8, 8))
        acc = accuracy_score(y_true=true, y_pred=pred)
        vs.plot_confusion_matrix(cm=confusion_matrix(y_true=true, y_pred=pred),
                                 labels=labels_name,
                                 cbar=True,
                                 fontsize=10,
                                 title=f'{title} Acc:{acc:.2f}')
    ## save arrays for later inspections
    with open(f'{expdir}/arrays', 'wb') as f:
        pickle.dump(
            dict(z_train=z_train,
                 y_pred_train=y_pred_train,
                 y_true_train=y_true_train,
                 z_test=z_test,
                 y_pred_test=y_pred_test,
                 y_true_test=y_true_test,
                 labels=labels_name,
                 ds=ds.name,
                 label_type=label_type), f)
    print(f'Exported arrays to "{expdir}/arrays"')
    ## semi-supervised
    z_mean_train = np.concatenate(
        [z.mean().numpy().reshape(z.batch_shape[0], -1) for z in z_train], -1)
    z_mean_test = np.concatenate(
        [z.mean().numpy().reshape(z.batch_shape[0], -1) for z in z_test], -1)
    # === 2. scatter points latents plot
    n_points = 5000
    ids = rand.permutation(len(labels_true))[:n_points]
    Y_true = labels_true[ids]
    Y_pred = labels_pred[ids]
    # tsne plot
    n_latents = 0 if len(z_train) == 1 else len(z_train)
    for name, X in zip(
        ['all'] + [f'latents{i}'
                   for i in range(n_latents)], [z_mean_test[ids]] +
        [z_test[i].mean().numpy()[ids] for i in range(n_latents)]):
        print(f'Plot scatter points for {name}')
        X = X.reshape(X.shape[0], -1)  # flatten to 2D
        X = Pipeline([('zscore', StandardScaler()),
                      ('pca', PCA(min(X.shape[1], 512),
                                  random_state=seed))]).fit_transform(X)
        tsne = DimReduce.TSNE(X, n_components=2, framework='sklearn')
        kw = dict(x=tsne[:, 0], y=tsne[:, 1], grid=False, size=12.0, alpha=0.8)
        plt.figure(figsize=(12, 6))
        vs.plot_scatter(color=Y_true,
                        title=f'[True]{title}-{name}',
                        ax=(1, 2, 1),
                        **kw)
        vs.plot_scatter(color=Y_pred,
                        title=f'[Pred]{title}-{name}',
                        ax=(1, 2, 2),
                        **kw)
    ## save all plot
    vs.plot_save(f'{expdir}/analysis.pdf', dpi=180, verbose=True)

    # === 3. show the latents statistics
    n_latents = len(z_train)
    colors = sns.color_palette(n_colors=len(labels_true))
    styles = dict(grid=False,
                  ticks_off=False,
                  alpha=0.6,
                  xlabel='mean',
                  ylabel='stddev')

    # scatter between latents and labels (assume categorical distribution)
    def _show_latents_labels(Z, Y, title):
        plt.figure(figsize=(5 * n_latents, 5), dpi=150)
        for idx, z in enumerate(Z):
            if len(z.batch_shape) == 0:
                mean = np.repeat(np.expand_dims(z.mean(), 0), Y.shape[0], 0)
                stddev = z.sample(Y.shape[0]) - mean
            else:
                mean = flatten(z.mean())
                stddev = flatten(z.stddev())
            y = np.argmax(Y, axis=-1)
            data = [[], [], []]
            for y_i, c in zip(np.unique(y), colors):
                mask = (y == y_i)
                data[0].append(np.mean(mean[mask], 0))
                data[1].append(np.mean(stddev[mask], 0))
                data[2].append([labels_true[y_i]] * mean.shape[1])
            vs.plot_scatter(
                x=np.concatenate(data[0], 0),
                y=np.concatenate(data[1], 0),
                color=np.concatenate(data[2], 0),
                ax=(1, n_latents, idx + 1),
                size=15 if mean.shape[1] < 128 else 8,
                title=f'[Test-{title}]#{idx} - {mean.shape[1]} (units)',
                **styles)
        plt.tight_layout()

    # simple scatter mean-stddev each latents
    def _show_latents(Z, title):
        plt.figure(figsize=(3.5 * n_latents, 3.5), dpi=150)
        for idx, z in enumerate(Z):
            mean = flatten(z.mean())
            stddev = flatten(z.stddev())
            if mean.ndim == 2:
                mean = np.mean(mean, 0)
                stddev = np.mean(stddev, 0)
            vs.plot_scatter(
                x=mean,
                y=stddev,
                ax=(1, n_latents, idx + 1),
                size=15 if len(mean) < 128 else 8,
                title=f'[Test-{title}]#{idx} - {len(mean)} (units)',
                **styles)

    _show_latents_labels(z_test, y_true_test, 'post')
    _show_latents_labels(pz_test, y_true_test, 'prior')
    _show_latents(z_test, 'post')
    _show_latents(pz_test, 'prior')

    # KL statistics
    vs.plot_figure()
    for idx, (qz, pz) in enumerate(zip(z_test, pz_test)):
        kl = []
        qz = Normal(loc=qz.mean(), scale=qz.stddev(), name=f'posterior{idx}')
        pz = Normal(loc=pz.mean(), scale=pz.stddev(), name=f'prior{idx}')
        for s, e in minibatch(batch_size=8, n=100):
            z = qz.sample(e - s)
            # don't do this in GPU, it explodes!
            kl.append((qz.log_prob(z) - pz.log_prob(z)).numpy())
        kl = np.concatenate(kl, 0)  # (mcmc, batch, event)
        # per sample
        kl_samples = np.sum(kl, as_tuple(list(range(2, kl.ndim))))
        kl_samples = logsumexp(kl_samples, 0)
        plt.subplot(n_latents, 2, idx * 2 + 1)
        sns.histplot(kl_samples, bins=50)
        plt.title(f'Z#{idx} KL per sample (nats)')
        # per latent
        kl_latents = np.mean(flatten(logsumexp(kl, 0)), 0)
        plt.subplot(n_latents, 2, idx * 2 + 2)
        plt.plot(np.sort(kl_latents))
        plt.title(f'Z#{idx} KL per dim (nats)')
    plt.tight_layout()

    vs.plot_save(f'{expdir}/latents.pdf', dpi=180, verbose=True)
コード例 #37
0
                 color=y_train_color,
                 marker=y_train_marker,
                 fontsize=12,
                 legend=legends,
                 title='[train]' + str(title),
                 ax=(1, 2, 1))
    plot_scatter(x=score[:, 0],
                 y=score[:, 1],
                 z=None if NUM_DIM < 3 or score.shape[1] < 3 else score[:, 2],
                 size=POINT_SIZE,
                 color=y_score_color,
                 marker=y_score_marker,
                 fontsize=12,
                 legend=legends,
                 title='[score]' + str(title),
                 ax=(1, 2, 2))


plot(train=X_train_pca, score=X_score_pca, title='PCA')
plot(train=X_train_tsne, score=X_score_tsne, title='T-SNE')
plot(train=X_train_tsne_pca, score=X_score_tsne_pca, title='T-SNE + PCA')
plot(train=X_train_lda, score=X_score_lda, title='LDA')
plot(train=X_train_plda, score=X_score_plda, title='PLDA')
plot(train=X_train_plda,
     score=X_score_plda,
     title='PLDA + PCA',
     applying_pca=True)
plot(train=X_train_gmm, score=X_score_gmm, title='GMM')
plot(train=X_train_rbm, score=X_score_rbm, title='RBM')
plot_save('/tmp/tmp.pdf')
コード例 #38
0
streamline_classifier(Z_train=scvi_z,
                      y_train=y,
                      Z_test=scvi_ztest,
                      y_test=y_test,
                      labels_name=labels,
                      title='scVI')
streamline_classifier(Z_train=sisua_z,
                      y_train=y,
                      Z_test=sisua_ztest,
                      y_test=y_test,
                      labels_name=labels,
                      title='SISUA')

# ====== imputation ====== #
V.plot_figure(nrow=6, ncol=18)
ids = np.argsort(library_size)
plt.plot(library_size[ids], label="Original", linewidth=2.0, linestyle='--')
plt.plot(scvi_outputs[-3].ravel()[ids], label="scVI", linewidth=2.0)
plt.plot(sisua_outputs[-3].ravel()[ids], label="SISUA", linewidth=2.0)
plt.legend()
plt.title("Library Size")

x = to_array(x)
scvi_score = imputation_score(original=x, imputed=scvi_outputs[2])
sisua_score = imputation_score(original=x, imputed=sisua_outputs[2])
print("scVI:", scvi_score)
print("SISUA:", scvi_score)

# ====== save all the figure ====== #
V.plot_save(SAVE_FIGURE_PATH, dpi=48)
コード例 #39
0
ファイル: callbacks.py プロジェクト: professorlust/odin-ai
  def epoch_end(self, task, epoch_results):
    output_name = self.output_name
    if len(output_name) == 0: # nothing to do
      return
    task_name = self._task_name

    if task.name in task_name:
      self._count -= 1
      # ====== processing results ====== #
      assert all(name in epoch_results for name in output_name),\
      "Given outputs with name: %s; but task: '%s' results only contain name: %s" % \
      (', '.join(self.output_name), str(task), ', '.join(tuple(epoch_results.keys())))

      for name in output_name:
        batch_results = epoch_results[name]
        if name not in self._epoch_results[task.name]:
          self._epoch_results[task.name][name] = []
        self._epoch_results[task.name][name].append(self.fn_reduce(batch_results))
      # ====== start plotting ====== #
      if self._count == 0:
        self._count = self._repeat_freq * len(task_name)
        from odin import visual as V
        n_col = len(task_name)
        n_row = len(output_name)
        if self.save_path is not None:
          from matplotlib import pyplot as plt
        save_figures = False
        override = True

        for o_idx, o_name in enumerate(output_name):
          results = {task_name: r[o_name]
                     for task_name, r in self._epoch_results.items()}
          if all(len(i) >= 2 for i in results.values()):
            # ====== print text plot ====== #
            if self.print_plot:
              text = []
              for t_name in task_name:
                values = results[t_name]
                if isinstance(values[0], Number):
                  t = V.print_bar(f=values, height=8,
                                  title=t_name + "/" + o_name)
                elif isinstance(values[0], np.ndarray) and values[0].ndim == 2 and \
                values[0].shape[0] == values[0].shape[1]:
                  t = V.print_confusion(arr=values[-1],
                                       side_bar=False, inc_stats=True,
                                       float_precision=2)
                else:
                  t = ''
                if len(t) > 0:
                  text.append(t)
              if len(text) > 1:
                print(V.merge_text_graph(*text, padding='  '))
              else:
                print(text[0])
            # ====== matplotlib plot and save pdf ====== #
            if self.save_path is not None:
              for t_idx, t_name in enumerate(task_name):
                values = results[t_name]
                # plotting series
                if isinstance(values[0], Number):
                  if not save_figures:
                    V.plot_figure(nrow=int(n_row * 1.8), ncol=20)
                  save_figures = True

                  max_epoch = np.argmax(values)
                  max_val = values[max_epoch]
                  min_epoch = np.argmin(values)
                  min_val = values[min_epoch]

                  plt.subplot(n_row, n_col, o_idx * len(task_name) + t_idx + 1)
                  plt.plot(values)
                  plt.scatter(max_epoch, max_val, s=180, alpha=0.4, c='r')
                  plt.scatter(min_epoch, min_val, s=180, alpha=0.4, c='g')

                  plt.xlim((0, len(values) - 1))
                  if not np.any(np.isinf(values)):
                    eps = 0.1 * (max_val - min_val)
                    plt.ylim((min_val - eps, max_val + eps))
                  plt.xticks(np.linspace(0, len(values) - 1, num=12,
                                         dtype='int32'))

                  title_text = '[%s]' % o_name if t_idx == 0 else ''
                  title_text += t_name
                  plt.title('%s' % title_text,
                            fontsize=8, fontweight='bold')
        # save figure to pdf or image files
        if save_figures:
          if override:
            save_path = self.save_path
          else:
            path, ext = os.path.splitext(self.save_path)
            save_path = path + ('.%d' % (task.curr_epoch + 1)) + ext
          V.plot_save(save_path, tight_plot=True,
                      clear_all=True, log=False, dpi=180)
          self.send_notification("Saved summary at: %s" % save_path)
    return None
コード例 #40
0
            plot(group,
                 x='beta',
                 y='gamma',
                 hue='llk',
                 size='au_std',
                 title=f'zdim={zdim}',
                 ax=ax)
        plt.tight_layout()
        # fix zdim, show au and elbo
        plt.figure(figsize=(n_cols * 6, n_rows * 5), dpi=200)
        for i, (zdim, group) in tqdm(enumerate(df.groupby('zdim'))):
            ax = plt.subplot(n_rows, n_cols, i + 1)
            plot(group,
                 x='beta',
                 y='gamma',
                 hue='elbo',
                 size='au_std',
                 title=f'zdim={zdim}',
                 ax=ax)
        plt.tight_layout()
        # save all figures
        vs.plot_save(os.path.join(save_path, 'rate_distortion.pdf'),
                     verbose=True)
        # save score file
        score_path = os.path.join(save_path, 'results.txt')
        with open(score_path, 'w') as f:
            df.to_string(f, index=False)
            print('Saved score file:', score_path)
    else:
        raise NotImplementedError(f'No support mode={args.mode}')
コード例 #41
0
ファイル: tvec.py プロジェクト: trungnt13/odin-ai
# training PLDA
Z3_train, y_train = make_dnn_prediction(f_z3, X=train, title="TRAIN")
print("Z3_train:", Z3_train.shape, y_train.shape)
Z3_valid, y_valid = make_dnn_prediction(f_z3, X=valid, title="VALID")
print("Z3_valid:", Z3_valid.shape, y_valid.shape)
plda = PLDA(n_phi=200,
            random_state=K.get_rng().randint(10e8),
            n_iter=12,
            labels=labels,
            verbose=0)
plda.fit(np.concatenate([Z3_train, Z3_valid], axis=0),
         np.concatenate([y_train, y_valid], axis=0))
y_pred_log_proba = plda.predict_log_proba(Z3_test)
evaluate(y_true=X_test_true,
         y_pred_log_proba=y_pred_log_proba,
         labels=labels,
         title="Test set (PLDA - Latent prediction)",
         path=os.path.join(EXP_DIR, 'test_latent.pdf'))
# ====== visualize ====== #
visualize_latent_space(X_org=X_test_data,
                       X_latent=Z1_test,
                       name=X_test_name,
                       labels=X_test_true,
                       title="latent1")
visualize_latent_space(X_org=X_test_data,
                       X_latent=Z2_test,
                       name=X_test_name,
                       labels=X_test_true,
                       title="latent2")
V.plot_save(os.path.join(EXP_DIR, 'latent.pdf'))
コード例 #42
0
def plot_epoch(task):
    if task is None:
        curr_epoch = 0
    else:
        curr_epoch = task.curr_epoch
        if not (curr_epoch < 5 or curr_epoch % 5 == 0):
            return
    rand = np.random.RandomState(seed=1234)

    X, y = X_test, y_test
    n_data = X.shape[0]
    Z = f_z(X)
    W, W_stdev_mcmc, W_stdev_analytic = f_w(X)

    X_pca, W_pca_1 = fast_pca(X,
                              W,
                              n_components=2,
                              random_state=rand.randint(10e8))
    W_pca_2 = fast_pca(W, n_components=2, random_state=rand.randint(10e8))
    X_count_sum = np.sum(X, axis=tuple(range(1, X.ndim)))
    W_count_sum = np.sum(W, axis=-1)

    n_visual_samples = 8
    nrow = 13 + n_visual_samples * 3
    V.plot_figure(nrow=int(nrow * 1.8), ncol=18)
    with V.plot_gridSpec(nrow=nrow + 3, ncol=6, hspace=0.8) as grid:
        # plot the latent space
        for i, (z, name) in enumerate(zip(Z, Z_names)):
            if z.shape[1] > 2:
                z = fast_pca(z,
                             n_components=2,
                             random_state=rand.randint(10e8))
            ax = V.subplot(grid[:3, (i * 2):(i * 2 + 2)])
            V.plot_scatter(x=z[:, 0],
                           y=z[:, 1],
                           color=y,
                           marker=y,
                           n_samples=4000,
                           ax=ax,
                           legend_enable=False,
                           legend_ncol=n_classes)
            ax.set_title(name, fontsize=12)
        # plot the reconstruction
        for i, (x, name) in enumerate(
                zip([X_pca, W_pca_1, W_pca_2], [
                    'Original data', 'Reconstruction',
                    'Reconstruction (separated PCA)'
                ])):
            ax = V.subplot(grid[3:6, (i * 2):(i * 2 + 2)])
            V.plot_scatter(x=x[:, 0],
                           y=x[:, 1],
                           color=y,
                           marker=y,
                           n_samples=4000,
                           ax=ax,
                           legend_enable=i == 1,
                           legend_ncol=n_classes,
                           title=name)
        # plot the reconstruction count sum
        for i, (x, count_sum, name) in enumerate(
                zip([X_pca, W_pca_1], [X_count_sum, W_count_sum], [
                    'Original data (Count-sum)', 'Reconstruction (Count-sum)'
                ])):
            ax = V.subplot(grid[6:10, (i * 3):(i * 3 + 3)])
            V.plot_scatter(x=x[:, 0],
                           y=x[:, 1],
                           val=count_sum,
                           n_samples=2000,
                           marker=y,
                           ax=ax,
                           size=8,
                           legend_enable=i == 0,
                           legend_ncol=n_classes,
                           title=name,
                           colorbar=True,
                           fontsize=10)
        # plot the count-sum series
        count_sum_observed = np.sum(X, axis=0).ravel()
        count_sum_expected = np.sum(W, axis=0)
        count_sum_stdev_explained = np.sum(W_stdev_mcmc, axis=0)
        count_sum_stdev_total = np.sum(W_stdev_analytic, axis=0)
        for i, kws in enumerate([
                dict(xscale='linear', yscale='linear', sort_by=None),
                dict(xscale='linear', yscale='linear', sort_by='expected'),
                dict(xscale='log', yscale='log', sort_by='expected')
        ]):
            ax = V.subplot(grid[10:10 + 3, (i * 2):(i * 2 + 2)])
            V.plot_series_statistics(count_sum_observed,
                                     count_sum_expected,
                                     explained_stdev=count_sum_stdev_explained,
                                     total_stdev=count_sum_stdev_total,
                                     fontsize=8,
                                     title="Count-sum" if i == 0 else None,
                                     **kws)
        # plot the mean and variances
        curr_grid_index = 13
        ids = rand.permutation(n_data)
        ids = ids[:n_visual_samples]
        for i in ids:
            observed, expected, stdev_explained, stdev_total = \
                X[i], W[i], W_stdev_mcmc[i], W_stdev_analytic[i]
            observed = observed.ravel()
            for j, kws in enumerate([
                    dict(xscale='linear', yscale='linear', sort_by=None),
                    dict(xscale='linear', yscale='linear', sort_by='expected'),
                    dict(xscale='log', yscale='log', sort_by='expected')
            ]):
                ax = V.subplot(grid[curr_grid_index:curr_grid_index + 3,
                                    (j * 2):(j * 2 + 2)])
                V.plot_series_statistics(observed,
                                         expected,
                                         explained_stdev=stdev_explained,
                                         total_stdev=stdev_total,
                                         fontsize=8,
                                         title="Test Sample #%d" %
                                         i if j == 0 else None,
                                         **kws)
            curr_grid_index += 3
    V.plot_save(os.path.join(FIGURE_PATH, 'latent_%d.png' % curr_epoch),
                dpi=200,
                log=True)
    exit()
コード例 #43
0
                device='gpu')
      gmm.initialize(X)
      print(gmm)
      gmm.fit(X)
      # ====== match each components to closest mean ====== #
      gmm_mean = [None] * nmix
      gmm_sigma = [None] * nmix
      for mean, sigma in zip(gmm.mean.T, gmm.sigma.T):
        sigma = np.diag(sigma)
        distance = sorted([(i, np.sqrt(np.sum((m - mean)**2)))
                           for i, m in enumerate(stats_mean)],
                          key=lambda x: x[1])
        for i, dist in distance:
          if gmm_mean[i] is None:
            gmm_mean[i] = mean
            gmm_sigma[i] = sigma
            break
      # ====== plot everything ====== #
      plt.figure()
      colors = V.generate_random_colors(n=nmix)
      for i in range(nmix):
        c = colors[i]
        dat = y[i]
        sigma = gmm_sigma[i]
        plt.scatter(dat[:, 0], dat[:, 1], c=c, s=0.5)
        V.plot_ellipses(gmm_mean[i], gmm_sigma[i], alpha=0.5, color=c)
        V.plot_ellipses(stats_mean[i], stats_sigma[i], alpha=0.3, color='red')
      plt.suptitle('#iter:%d stochastic:%s downsample:%d ' %
        (niter, stochastic, downsample))
V.plot_save(pdf_path)
コード例 #44
0
ファイル: det_eer_dcf.py プロジェクト: professorlust/odin-ai
false = stdv_False * np.random.randn(n_false) + mean_False

y_true = np.zeros(shape=(n_true + n_false, ))
y_true[:n_true] = 1
y_score = np.concatenate((true, false))

Pfa, Pmiss = K.metrics.det_curve(y_true=y_true, y_score=y_score)

min_DCF, Pfa_opt, Pmiss_opt = K.metrics.compute_minDCF(Pfa, Pmiss)
print("MinDCF, Pmiss_opt, Pfa_opt:", min_DCF, Pmiss_opt, Pfa_opt)
print("EER1:", K.metrics.compute_EER(Pfa, Pmiss))

pmiss, pfa = rocch(tar_scores=true, nontar_scores=false)
min_DCF, Pfa_opt, Pmiss_opt = K.metrics.compute_minDCF(pfa, pmiss)
print("[Sidekit]MinDCF, Pmiss_opt, Pfa_opt:", min_DCF, Pmiss_opt, Pfa_opt)
print("[Sidekit]EER:", compute_EER(pmiss, pfa))
print("[Sidekit]MinDCF, Pmiss_opt, Pfa_opt, ..., EER:",
      fast_minDCF(tar=true, non=false, plo=0))

fpr, tpr, _ = K.metrics.roc_curve(y_true=y_true, y_score=y_score)
auc = K.metrics.compute_AUC(tpr, fpr)

# ====== specialized plotting ====== #
plt.figure()
V.plot_detection_curve(x=pfa, y=pmiss, curve='det')
plt.figure()
V.plot_detection_curve(x=Pfa, y=Pmiss, curve='det')
plt.figure()
V.plot_detection_curve(x=fpr, y=tpr, curve='roc')
V.plot_save('/tmp/tmp.pdf')
コード例 #45
0
ファイル: analyze_data.py プロジェクト: trungnt13/odin-ai
        FutureWarning):
    data_map = {}
    stats_map = {}
    spk_map = {}
    for dsname, text, data, stats, spk_stats in mpi.MPI(
            jobs=all_dataset, func=dataset_statistics, ncpu=None, batch=1):
        data_map[dsname] = data
        stats_map[dsname] = stats
        spk_map[dsname] = spk_stats
        print(text)

    for dsname in all_dataset:
        print("Plotting ...", ctext(dsname, 'cyan'))
        data = data_map[dsname]
        V.plot_figure(nrow=2, ncol=20)
        ax = plt.subplot(1, n_col, 1)
        plot_histogram(data[0], ax, title="Duration")

        ax = plt.subplot(1, n_col, 2)
        plot_histogram(data[1]['sum_per_spk'], ax, title="Dur/Spk")

        ax = plt.subplot(1, n_col, 3)
        plot_histogram(data[1]['nutt_per_spk'], ax, title="#Utt/Spk")

        plt.suptitle(dsname, fontsize=8)

    plot_mean_std(_map=stats_map, title='Data')
    plot_mean_std(_map=spk_map, title='Speaker')

V.plot_save(figure_path, dpi=32)
コード例 #46
0
ファイル: processor.py プロジェクト: imito/odin
def validate_features(ds_or_processor, path, nb_samples=25,
                      override=False, seed=12082518, fig_width=4):
  # TODO: add PCA visualization
  # TODO: update to match new indices style
  def logger(title, tag, check):
    check = bool(check)
    text_color = 'yellow' if check else 'red'
    print(ctext('   *', 'cyan'),
          ctext(str(title), text_color),
          ctext(str(tag), 'magenta'),
          ctext("✓", text_color) if check else ctext("✗", text_color))
  import matplotlib
  matplotlib.use('Agg')
  from odin.visual import plot_save, plot_multiple_features
  # ====== check path to dataset ====== #
  should_close_ds = True
  if isinstance(ds_or_processor, FeatureProcessor):
    ds = Dataset(ds_or_processor.path, read_only=True)
  elif is_string(ds_or_processor):
    ds = Dataset(ds_or_processor, read_only=True)
  elif isinstance(ds_or_processor, Dataset):
    ds = ds_or_processor
    should_close_ds = False
  else:
    raise ValueError("`ds` can be None, string, or Dataset. No "
                     "support for given input type: %s" % str(type(ds)))
  print(ctext('Validating dataset:', 'yellow'), '"%s"' % ds.path)
  # ====== extract the config of the dataset ====== #
  if 'config' not in ds:
    raise RuntimeError("The `Dataset` must be generated by `FeatureProcessor` "
                       "which must contain `config` MmapDict of extracted "
                       "features configuration.")
  # config = ds['config']
  # pipeline = ds['pipeline']
  # ====== output path ====== #
  path = str(path)
  if not os.path.exists(path):
    os.mkdir(path)
  elif override:
    if os.path.isfile(path):
      os.remove(path)
    else:
      shutil.rmtree(path)
    os.mkdir(path)
  else:
    raise ValueError("`path`=%s exists, cannot override." % path)
  prev_stdio = get_stdio_path()
  stdio(path=os.path.join(path, 'log.txt'))
  nb_samples = int(nb_samples)
  # ====== get all features ====== #
  # [(name, dtype, statistic-able), ...]
  all_keys = [k for k in ds.keys() if k not in ('config', 'pipeline')]
  # store all features (included the features in external_indices
  all_features = []
  # the external indices can be: indices_mfcc_bnf
  external_indices = flatten_list([k.split('_')[1:] for k in all_keys
                                   if 'indices' in k and k != 'indices'])
  # ====== checking indices ====== #
  main_indices = {name: (start, end)
                  for name, (start, end) in ds['indices'].items()}
  for ids_name in (k for k in all_keys if 'indices' in k):
    ids = sorted([(name, start, end)
                  for name, (start, end) in ds[ids_name].items()],
                 key=lambda x: x[1])
    for prev, now in zip(ids, ids[1:]):
      assert prev[2] == now[1], "Zero length in indices"
      assert prev[2] - prev[1] > 0, "Zero length in indices"
      assert now[2] - now[1] > 0, "Zero length in indices"
    # final length match length of Data
    if ids_name != 'indices':
      for feat_name in ids_name.split('_')[1:]:
        assert now[-1] == len(ds[feat_name]), \
            "Indices and data length mismatch, indices:'%s' feat:'%s'" % \
            (ids_name, feat_name)
        all_features.append(feat_name)
    else:
      for feat_name in all_keys:
        if feat_name not in external_indices and \
        'sum1' != feat_name[-4:] and 'sum2' != feat_name[-4:] and \
        'mean' != feat_name[-4:] and 'std' != feat_name[-3:] and \
        isinstance(ds[feat_name], MmapData):
          assert now[-1] == len(ds[feat_name]), \
          "Length of indices and actual data mismatch, " + ids_name + ':' + feat_name
          all_features.append(feat_name)
    # logging
    logger("Checked all:", ids_name, True)
  # ====== check all dictionary types ====== #
  for name in all_keys:
    if isinstance(ds[name], MmapDict) and 'indices' not in name:
      data = ds[name]
      # special cases
      if name == 'sr':
        checking_func = lambda x: x > 0 # for sr
      else:
        checking_func = lambda x: True
      # check
      for key, val in data.items():
        assert key in main_indices, \
        "Dictionary with name:'%s' has key not found in indices." % name
        assert checking_func(val)
      logger("Checked dictionary: ", name, True)
  # ====== checking each type of data ====== #
  # get all stats name
  all_stats = defaultdict(list)
  for k in all_keys:
    if 'sum1' == k[-4:] or 'sum2' == k[-4:] or \
    'mean' == k[-4:] or 'std' == k[-3:]:
      all_stats[k[:-4].split('_')[0]].append(k)
  # get all pca name
  all_pca = {i: i + '_pca' for i in all_features
             if i + '_pca' in ds}
  # checking one-by-one numpy.ndarray features array
  for feat_name in all_features:
    dtype = str(ds[feat_name].dtype)
    # checking all data
    indices = ds.find_prefix(feat_name, 'indices')
    prog = Progbar(target=len(indices), interval=0.1,
                   print_report=True,
                   name='Checking: %s(%s)' % (feat_name, dtype))
    # start iterating over all data file
    fail_test = False
    for file_name, (start, end) in indices:
      dat = ds[feat_name][start:end]
      # No NaN value
      if np.any(np.isnan(dat)):
        logger("NaN values", file_name + ':' + feat_name, False)
        fail_test = True
      # not all value closed to zeros
      if np.all(np.isclose(dat, 0.)):
        logger("All-closed-zeros values", file_name + ':' + feat_name,
               False)
        fail_test = True
      prog['Name'] = file_name
      prog.add(1)
    if not fail_test:
      logger("Check data incredibility for: ", feat_name, True)
    # checking statistics
    if feat_name in all_stats:
      fail_test = False
      for stat_name in all_stats[feat_name]:
        X = ds[stat_name]
        if X.ndim >= 1:
          X = X[:]
        if np.any(np.isnan(X)):
          logger("NaN values", feat_name + ':' + stat_name, False)
          fail_test = True
        if np.all(np.isclose(X, 0.)):
          logger("All-closed-zeros values", feat_name + ':' + stat_name,
                 False)
          fail_test = True
      if not fail_test:
        logger("Check statistics for: ", feat_name, True)
    # check PCA
    if feat_name in all_pca:
      pca = ds[all_pca[feat_name]]
      n = ds[feat_name].shape[0]
      nb_feats = ds[feat_name].shape[-1]
      fail_test = False
      # performing PCA on random samples
      for i in range(nb_samples):
        start = np.random.randint(0, n - nb_samples - 1)
        X = pca.transform(
            ds[feat_name][start:(start + nb_samples)],
            n_components=max(nb_feats // 2, 1))
        if np.any(np.isnan(X)):
          logger("NaN values in PCA", feat_name, False)
          fail_test = True
          break
        if np.all(np.isclose(X, 0.)):
          logger("All-closed-zeros values in PCA", feat_name, False)
          fail_test = True
          break
      if not fail_test:
        logger("Check PCA for: ", feat_name, True)
  # ====== Do sampling ====== #
  np.random.seed(seed) # seed for reproceducible
  all_samples = np.random.choice(list(ds['indices'].keys()),
                                 size=nb_samples,
                                 replace=False)
  # plotting all samples
  for sample_id, file_name in enumerate(all_samples):
    X = {}
    for feat_name in all_features:
      start, end = ds.find_prefix(feat_name, 'indices')[file_name]
      feat = ds[feat_name][start:end]
      X[feat_name] = feat
      # some special handling
      try:
        _special_cases(X=feat, feat_name=feat_name, file_name=file_name,
                       ds=ds, path=path)
      except Exception as e:
        logger("Special case error: %s" % str(e),
               file_name + ':' + feat_name, False)
    plot_multiple_features(X, title=file_name, fig_width=fig_width)
    figure_path = os.path.join(path, '%s.pdf' % _escape_file_name(file_name))
    plot_save(figure_path, log=False, clear_all=True)
    logger("Sample figure saved at: ", figure_path, True)
  # plotting the statistic
  figure_path = os.path.join(path, 'stats.pdf')
  for feat_name, stat_name in all_stats.items():
    X = {name: ds[name][:]
         for name in stat_name
         if ds[name].ndim >= 1}
    if len(X) > 0:
      plot_multiple_features(X, title=feat_name, fig_width=fig_width)
  plot_save(figure_path, log=False, clear_all=True)
  logger("Stats figure save at: ", figure_path, True)
  logger("All reports at folder: ", os.path.abspath(path), True)
  # ====== cleaning ====== #
  stdio(path=prev_stdio)
  if should_close_ds:
    ds.close()