def test_parameter_get_unit_works(name, product, unit, expect): assert datamodel.Parameter( description=name, unit=unit, dtype="f4", dimension=["time"], ).get_unit(datamodel.is_temperature(product)) == expect
def test_parameter_l2type_works(para, expect): assert datamodel.Parameter( description=para, unit=datamodel.Unit.product, dtype=datamodel.DType.f4, dimension=datamodel.Dimension.d2, ).l2type == expect
def test_parameter_get_description_works(para, product, expect): assert datamodel.Parameter( description=para, unit="mm", dtype="f4", dimension=["time"], ).get_description(datamodel.is_temperature(product)) == expect
(1, 1.5, np.inf), (1, 1.5, np.NINF), (1, 1.5, np.NAN), )) def test_l2i_is_not_valid_works(freqmode, residual, lmfactor): assert not datamodel.L2i(GenerationTime=dt.datetime(2000, 1, 2, 3, 4, 5), Residual=residual, MinLmFactor=lmfactor, FreqMode=freqmode).isvalid() @pytest.mark.parametrize("para,expect", ( ( datamodel.Parameter( datamodel.L2ancDesc.LST, "-", "-", "-", ), 0., ), ( datamodel.Parameter( datamodel.L2iDesc.Residual, "-", "-", "-", ), 7., ), ( datamodel.Parameter(