コード例 #1
0
ファイル: test_processing.py プロジェクト: xiaojielin/oemof
    def setUpClass(cls):
        cls.period = 24
        cls.es = EnergySystem(timeindex=pandas.date_range(
            '2016-01-01', periods=cls.period, freq='H'))

        # BUSSES
        b_el1 = Bus(label="b_el1")
        b_el2 = Bus(label="b_el2")
        b_diesel = Bus(label='b_diesel', balanced=False)
        cls.es.add(b_el1, b_el2, b_diesel)

        # TEST DIESEL:
        dg = Transformer(
            label='diesel',
            inputs={b_diesel: Flow(variable_costs=2)},
            outputs={
                b_el1: Flow(variable_costs=1,
                            investment=Investment(ep_costs=0.5))
            },
            conversion_factors={b_el1: 2},
        )

        batt = GenericStorage(
            label='storage',
            inputs={b_el1: Flow(variable_costs=3)},
            outputs={b_el2: Flow(variable_costs=2.5)},
            capacity_loss=0.00,
            initial_capacity=0,
            invest_relation_input_capacity=1 / 6,
            invest_relation_output_capacity=1 / 6,
            inflow_conversion_factor=1,
            outflow_conversion_factor=0.8,
            fixed_costs=35,
            investment=Investment(ep_costs=0.4),
        )

        cls.demand_values = [100] * 8760
        cls.demand_values[0] = 0.0
        demand = Sink(label="demand_el",
                      inputs={
                          b_el2:
                          Flow(nominal_value=1,
                               actual_value=cls.demand_values,
                               fixed=True)
                      })
        cls.es.add(dg, batt, demand)
        cls.om = Model(cls.es)
        cls.om.receive_duals()
        cls.om.solve()
        cls.mod = Model(cls.es)
        cls.mod.solve()
コード例 #2
0
def add_storages(table_collection, nodes):
    storages = table_collection["storages"]
    storages.columns = storages.columns.swaplevel()
    for region in storages["phes"].columns:
        storage_label = Label("storage", "electricity", "phes", region)
        bus_label = Label("bus", "electricity", "all", region)
        params = storages["phes"][region]
        nodes[storage_label] = GenericStorage(
            label=storage_label,
            inputs={nodes[bus_label]: Flow(nominal_value=params.pump)},
            outputs={nodes[bus_label]: Flow(nominal_value=params.turbine)},
            nominal_storage_capacity=params.energy,
            loss_rate=0,
            initial_storage_level=None,
            inflow_conversion_factor=params.pump_eff,
            outflow_conversion_factor=params.turbine_eff,
        )
コード例 #3
0
                          actual_value=data['demand_el'],
                          fixed=True)
                 })

# power plants
pp_coal = Transformer(
    label='pp_coal',
    inputs={bus_coal: Flow()},
    outputs={bus_el: Flow(nominal_value=40, emission_factor=0.335)},
    conversion_factors={bus_el: 0.39})

storage_el = GenericStorage(label='storage_el',
                            nominal_storage_capacity=1000,
                            inputs={bus_el: Flow(nominal_value=200)},
                            outputs={bus_el: Flow(nominal_value=200)},
                            loss_rate=0.01,
                            initial_storage_level=0,
                            max_storage_level=0.9,
                            inflow_conversion_factor=0.9,
                            outflow_conversion_factor=0.9)

# an excess and a shortage variable can help to avoid infeasible problems
excess_el = Sink(label='excess_el', inputs={bus_el: Flow()})

shortage_el = Source(label='shortage_el',
                     outputs={bus_el: Flow(variable_costs=100000)})

# ## Add all to the energysystem
energysystem.add(bus_coal, bus_gas, bus_el, source_gas, source_coal, wind, pv,
                 demand_el, pp_coal, storage_el, excess_el, shortage_el)
コード例 #4
0
                                           t_start_warm=3,
                                           t_start_hot=1,
                                           cold_start_costs=5,
                                           warm_start_costs=4,
                                           hot_start_costs=1,
                                           minimum_downtime=1,
                                           ramp_limit_up=3,
                                           ramp_limit_down=4))
    },
    heat_output={bth: Flow(Q_CW_min=[30 for p in range(0, total_time_steps)])},
    Beta=[0.19 for p in range(0, total_time_steps)],
    back_pressure=False)

stor = GenericStorage(label='Storage0',
                      nominal_storage_capacity=100,
                      inputs={bel: Flow()},
                      outputs={bel: Flow()},
                      initial_storage_level=0,
                      balanced=False)

print(f'Time for es creation: {time()-start}')
start = time()
om = MultiPeriodModel(es, interval_length=48, period=24)
print(f'Time for model creation: {time()-start:.6f}')
# create an optimization problem and solve it
start = time()
om.solve(solver='cplex', solve_kwargs={'tee': True})
print(f'Time for solving: {time()-start:.6f}')
if plt is not None:

    def plot_results(results):
        # plot electrical bus
コード例 #5
0
excess = Sink(label='excess', inputs={bus_heat: Flow()})

heat_demand = Sink(
    label='heat_demand',
    inputs={bus_heat: Flow(nominal_value=1, fix=demand_timeseries)})

thermal_storage = GenericStorage(
    label='thermal_storage',
    inputs={bus_heat: Flow(nominal_value=maximum_heat_flow_charging)},
    outputs={
        bus_heat:
        Flow(nominal_value=maximum_heat_flow_discharging,
             variable_costs=0.0001)
    },
    nominal_storage_capacity=nominal_storage_capacity,
    min_storage_level=input_data['min_storage_level'],
    max_storage_level=input_data['max_storage_level'],
    loss_rate=loss_rate,
    fixed_losses_relative=fixed_losses_relative,
    fixed_losses_absolute=fixed_losses_absolute,
    inflow_conversion_factor=1.0,
    outflow_conversion_factor=1.0,
)

energysystem.add(bus_heat, heat_source, shortage, excess, heat_demand,
                 thermal_storage)

# Create and solve the optimization model
optimization_model = Model(energysystem)
optimization_model.solve(solver=solver,
heat_demand = Sink(label='heat_demand',
                   inputs={
                       bus_heat:
                       Flow(nominal_value=1,
                            actual_value=demand_timeseries,
                            fixed=True)
                   })

thermal_storage = GenericStorage(
    label='thermal_storage',
    inputs={
        bus_heat:
        Flow(nominal_value=maximum_heat_flow_charging, variable_costs=0.0001)
    },
    outputs={bus_heat: Flow(nominal_value=maximum_heat_flow_discharging)},
    min_storage_level=min_storage_level,
    max_storage_level=max_storage_level,
    loss_rate=loss_rate,
    fixed_losses_relative=fixed_losses_relative,
    fixed_losses_absolute=fixed_losses_absolute,
    inflow_conversion_factor=1.,
    outflow_conversion_factor=1.,
    investment=Investment(ep_costs=400, minimum=1))

energysystem.add(bus_heat, heat_source, shortage, excess, heat_demand,
                 thermal_storage)

# create and solve the optimization model
optimization_model = Model(energysystem)
optimization_model.write('storage_model.lp',
                         io_options={'symbolic_solver_labels': True})
コード例 #7
0
                 inputs={
                     thbus:
                     Flow(nominal_value=1,
                          actual_value=data['demand_th'],
                          fixed=True)
                 })
excess_el = Sink(label='excess_el',
                 inputs={elbus: Flow(variable_costs=-0.005)})
shortage_el = Source(label='shortage_el',
                     outputs={elbus: Flow(variable_costs=1e10)})

el_storage = GenericStorage(label='el_storage',
                            inputs={elbus: Flow(variable_costs=0.0001)},
                            outputs={elbus: Flow()},
                            loss_rate=0.00,
                            initial_storage_level=0.5,
                            invest_relation_input_capacity=1 / 6,
                            invest_relation_output_capacity=1 / 6,
                            inflow_conversion_factor=0.9,
                            outflow_conversion_factor=0.9,
                            investment=Investment(ep_costs=epc_storage))

cop = 3
es.add(
    Transformer(label='heat_pump',
                inputs={elbus: Flow()},
                outputs={thbus: Flow(nominal_value=10)},
                conversion_factors={elbus: 1 / cop}))

th_storage = GenericStorage(label='th_storage',
                            nominal_storage_capacity=1000,
                            inputs={thbus: Flow(nominal_value=20)},
コード例 #8
0
ファイル: plots.py プロジェクト: andresgm/oemof-thermal
bus_simple_thermal_storage = Bus(label='bus_simple_thermal_storage',
                                 balanced=False)

energysystem.add(bus_simple_thermal_storage)

storage_list.append(
    GenericStorage(
        label='simple_thermal_storage',
        inputs={
            bus_simple_thermal_storage:
            Flow(nominal_value=input_data['maximum_heat_flow_charging'],
                 variable_costs=0.0001)
        },
        outputs={
            bus_simple_thermal_storage:
            Flow(nominal_value=input_data['maximum_heat_flow_discharging'],
                 variable_costs=0.0001)
        },
        nominal_storage_capacity=nominal_storage_capacity,
        min_storage_level=input_data['min_storage_level'],
        max_storage_level=input_data['max_storage_level'],
        initial_storage_level=27 / nominal_storage_capacity,
        loss_rate=0.001,
        inflow_conversion_factor=1.,
        outflow_conversion_factor=1.,
        balanced=False))

for i, nominal_storage_capacity in enumerate([30, 65, 90]):
    bus_i = Bus(label=f'bus_{i}', balanced=False)

    energysystem.add(bus_i)
shortage = Source(label='shortage',
                  outputs={bus_heat: Flow(variable_costs=1e6)})

excess = Sink(label='excess', inputs={bus_heat: Flow()})

heat_demand = Sink(
    label='heat_demand',
    inputs={bus_heat: Flow(nominal_value=1, fix=demand_timeseries)})

thermal_storage = GenericStorage(
    label='thermal_storage',
    inputs={bus_heat: Flow(investment=Investment(ep_costs=50))},
    outputs={bus_heat: Flow(investment=Investment(), variable_costs=0.0001)},
    min_storage_level=input_data['min_storage_level'],
    max_storage_level=input_data['max_storage_level'],
    loss_rate=loss_rate,
    fixed_losses_relative=fixed_losses_relative,
    fixed_losses_absolute=fixed_losses_absolute,
    inflow_conversion_factor=1.,
    outflow_conversion_factor=1.,
    invest_relation_input_output=1,
    investment=Investment(ep_costs=400, minimum=1))

energysystem.add(bus_heat, heat_source, shortage, excess, heat_demand,
                 thermal_storage)

# Create and solve the optimization model
optimization_model = Model(energysystem)
optimization_model.solve(solver=solver,
                         solve_kwargs={
                             'tee': False,
コード例 #10
0
epc_pv = economics.annuity(capex=1000, n=20, wacc=0.05)
epc_storage = economics.annuity(capex=1000, n=5, wacc=0.05)

pv = Source(label='pv', outputs={elbus: Flow(actual_value=data['pv'], nominal_value=None,
                                              fixed=True, investment=Investment(ep_costs=epc_pv))})

demand_el = Sink(label='demand_el', inputs={elbus: Flow(nominal_value=1, actual_value=data['demand_el'], fixed=True)})

# excess_el = Sink(label='excess_el', inputs={elbus: Flow(variable_costs=0)})
# shortage_el = Source(label='shortage_el', outputs={elbus: Flow(variable_costs=1e30)})

el_storage = GenericStorage(label='el_storage',
                            inputs={elbus: Flow(variable_costs=0.0001)},
                            outputs={elbus: Flow()},
                            loss_rate=0.00,
                            initial_storage_level=0.6, balanced=True,
                            invest_relation_input_capacity=1 / 6,
                            invest_relation_output_capacity=1 / 6,
                            inflow_conversion_factor=0.9,
                            outflow_conversion_factor=0.9,
                            investment=Investment(ep_costs=epc_storage))

grid = GenericStorage(label='grid',
                            inputs={elbus: Flow(variable_costs=-0.005)},
                            outputs={elbus: Flow(variable_costs=1.5)},
                            loss_rate=0.00, nominal_storage_capacity=10000000,
                            initial_storage_level=0.5, balanced=True,
                            invest_relation_input_capacity=1,
                            invest_relation_output_capacity=1,
                            inflow_conversion_factor=1,
                            outflow_conversion_factor=1)
コード例 #11
0
                          actual_value=data['demand_el'],
                          fixed=True)
                 })

# power plants
pp_coal = Transformer(
    label='pp_coal',
    inputs={bus_coal: Flow()},
    outputs={bus_el: Flow(nominal_value=40, emission_factor=0.335)},
    conversion_factors={bus_el: 0.39})

storage_el = GenericStorage(label='storage_el',
                            invest=Investment(ep_cost=412),
                            inputs={bus_el: Flow(nominal_value=200)},
                            outputs={bus_el: Flow(nominal_value=200)},
                            loss_rate=0.01,
                            initial_storage_level=0,
                            max_storage_level=0.9,
                            inflow_conversion_factor=0.9,
                            outflow_conversion_factor=0.9)

# an excess and a shortage variable can help to avoid infeasible problems
excess_el = Sink(label='excess_el', inputs={bus_el: Flow()})

shortage_el = Source(label='shortage_el',
                     outputs={bus_el: Flow(variable_costs=100000)})

# ## Add all to the energysystem
energysystem.add(bus_coal, bus_gas, bus_el, source_gas, source_coal, wind, pv,
                 demand_el, pp_coal, storage_el, excess_el, shortage_el)