コード例 #1
0
def check_oemof_installation(silent=False):
    date_time_index = pd.date_range('1/1/2012', periods=5, freq='H')

    energysystem = solph.EnergySystem(timeindex=date_time_index)

    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")
    solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})
    solph.Source(label='rgas', outputs={bgas: solph.Flow()})
    solph.Sink(label='demand', inputs={bel: solph.Flow(
        actual_value=[10, 20, 30, 40, 50], fixed=True, nominal_value=1)})
    solph.Transformer(
        label="pp_gas",
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})
    om = solph.Model(energysystem)

    # check solvers
    solver = dict()
    for s in ['cbc', 'glpk', 'gurobi', 'cplex']:
        try:
            om.solve(solver=s)
            solver[s] = "working"
        except Exception:
            solver[s] = "not working"

    if not silent:
        print("*********")
        print('Solver installed with oemof:')
        for s, t in solver.items():
            print("{0}: {1}".format(s, t))
        print("*********")
        print("oemof successfully installed.")
コード例 #2
0
ファイル: constraint_tests.py プロジェクト: xiaojielin/oemof
    def test_fixed_source_invest_sink(self):
        """ Wrong constraints for fixed source + invest sink w. `summed_max`.
        """

        bel = solph.Bus(label='electricityBus')

        solph.Source(label='wind',
                     outputs={
                         bel:
                         solph.Flow(actual_value=[12, 16, 14],
                                    nominal_value=1000000,
                                    fixed=True)
                     })

        solph.Sink(label='excess',
                   inputs={
                       bel:
                       solph.Flow(summed_max=2.3,
                                  variable_costs=25,
                                  max=0.8,
                                  investment=solph.Investment(ep_costs=500,
                                                              maximum=10e5,
                                                              existing=50))
                   })

        self.compare_lp_files('fixed_source_invest_sink.lp')
コード例 #3
0
ファイル: solph_tests.py プロジェクト: xiaojielin/oemof
    def test_investment_flow_grouping(self):
        """ Flows of investment sink should be grouped.

        The constraint tests uncovered a spurious error where the flows of an
        investment `Sink` where not put into the `InvestmentFlow` group,
        although the corresponding grouping was present in the energy system.
        The error occured in the case where the investment `Sink` was not
        instantiated directly after the `Bus` it is connected to.

        This test recreates this error scenario and makes sure that the
        `InvestmentFlow` group is not empty.
        """

        b = solph.Bus(label='Bus')

        solph.Source(label='Source', outputs={b: solph.Flow(
            actual_value=[12, 16, 14], nominal_value=1000000,
            fixed=True)})

        solph.Sink(label='Sink', inputs={b: solph.Flow(
            summed_max=2.3, variable_costs=25, max=0.8,
            investment=Investment(ep_costs=500, maximum=10e5))})

        ok_(self.es.groups.get(IF),
            ("Expected InvestmentFlow group to be nonempty.\n" +
             "Got: {}").format(self.es.groups.get(IF)))
コード例 #4
0
def ht_emergency_cooling_sink(param, busses):
    r"""
    Get high temp. emergency cooling sink for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    High temperature emergency cooling sink uses the following parameters:
    - 'op_cost_var' are the variable operational costs for emergency cooling in
      €/MWh

    Topology
    --------
    Input: High temperature heat network (wnw)

    Output: none
    """
    if param['HT-EC']['active']:
        ht_ec_sink = solph.Sink(
            label='HT-EC',
            inputs={
                busses['wnw']:
                solph.Flow(variable_costs=param['HT-EC']['op_cost_var'])
            })
        return ht_ec_sink
コード例 #5
0
def electricity_sink(param, data, busses):
    r"""
    Get electricity sink for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    data : pandas.DataFrame
        csv file of user defined time dependent parameters.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    Electricity sink uses the following parameters:
    - 'el_spot_price' is the time series of spot market price in €/MWh
    - 'vNNE' is the price for avoided grid usage fees in €/MWh

    Topology
    --------
    Input: Electricity network (enw)

    Output: none
    """
    elec_sink = solph.Sink(
        label='Spotmarkt',
        inputs={
            busses['enw']:
            solph.Flow(variable_costs=(-data['el_spot_price'] -
                                       param['param']['vNNE']))
        })
    return elec_sink
コード例 #6
0
ファイル: constraint_tests.py プロジェクト: xiaojielin/oemof
    def test_equate_variables_constraint(self):
        """Testing the equate_variables function in the constraint module."""
        bus1 = solph.Bus(label='Bus1')
        storage = solph.components.GenericStorage(
            label='storage_constraint',
            invest_relation_input_capacity=0.2,
            invest_relation_output_capacity=0.2,
            inputs={bus1: solph.Flow()},
            outputs={bus1: solph.Flow()},
            investment=solph.Investment(ep_costs=145))
        sink = solph.Sink(
            label='Sink',
            inputs={
                bus1: solph.Flow(investment=solph.Investment(ep_costs=500))
            })
        source = solph.Source(
            label='Source',
            outputs={
                bus1: solph.Flow(investment=solph.Investment(ep_costs=123))
            })
        om = self.get_om()
        solph.constraints.equate_variables(
            om, om.InvestmentFlow.invest[source, bus1],
            om.InvestmentFlow.invest[bus1, sink], 2)
        solph.constraints.equate_variables(
            om, om.InvestmentFlow.invest[source, bus1],
            om.GenericInvestmentStorageBlock.invest[storage])

        self.compare_lp_files('connect_investment.lp', my_om=om)
コード例 #7
0
def solar_thermal_emergency_cooling(param, busses):
    r"""
    Get solar thermal emergency cooling sink for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    data : pandas.DataFrame
        csv file of user defined time dependent parameters.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    Solar thermal emergency cooling sink uses the following parameters:
    - 'op_cost_var' are the variable operational costs for emergency cooling in
      €/MWh

    Topology
    --------
    Input: Solar thermal node (sol_node)

    Output: none
    """
    sol_ec_sink = solph.Sink(
        label='Sol-EC',
        inputs={
            busses['sol_node']:
            solph.Flow(variable_costs=param['Sol-EC']['op_cost_var'])
        })
    return sol_ec_sink
コード例 #8
0
def add_district_heating_demand(table_collection, nodes):
    """

    Parameters
    ----------
    table_collection
    nodes

    Returns
    -------

    """
    logging.debug("Add district heating systems to nodes dictionary.")
    dts = table_collection["heat demand series"]

    demand_sets = [c for c in dts.columns if "district heating" in str(c)]

    for demand_set in demand_sets:
        region = demand_set[0]
        if dts[demand_set].sum() > 0:
            bus_label = Label("bus", "heat", "district", region)
            if bus_label not in nodes:
                nodes[bus_label] = solph.Bus(label=bus_label)
            heat_demand_label = Label("demand", "heat", "district", region)
            nodes[heat_demand_label] = solph.Sink(
                label=heat_demand_label,
                inputs={
                    nodes[bus_label]: solph.Flow(
                        fix=dts[demand_set],
                        nominal_value=1,
                    )
                },
            )
コード例 #9
0
def add_electricity_demand(input_data, nodes):
    """

    Parameters
    ----------
    input_data
    nodes

    Returns
    -------

    """
    logging.debug("Add local electricity demand to nodes dictionary.")

    for idx, series in input_data["electricity demand series"].items():
        region = idx[0]
        demand_name = idx[1]
        if series.sum() > 0:
            bus_label = Label("bus", "electricity", "all", region)
            if bus_label not in nodes:
                create_electricity_bus(nodes, region)
            elec_demand_label = Label(
                "demand", "electricity", demand_name, region
            )
            nodes[elec_demand_label] = solph.Sink(
                label=elec_demand_label,
                inputs={
                    nodes[bus_label]: solph.Flow(
                        fix=series,
                        nominal_value=1,
                    )
                },
            )
コード例 #10
0
def add_demand(it, labels, gd, series, nodes, busd):

    for i, de in it.iterrows():
        labels['l_3'] = 'demand'

        if de['active']:
            labels['l_2'] = de['label_2']
            # set static inflow values
            inflow_args = {
                'nominal_value': de['scalingfactor'],
                'fixed': de['fixed'],
                'actual_value': series[labels['l_2']][labels['l_4']]
            }

            # create
            nodes.append(
                solph.Sink(
                    label=oh.Label(labels['l_1'], labels['l_2'], labels['l_3'],
                                   labels['l_4']),
                    inputs={
                        busd[(labels['l_1'], labels['l_2'], 'bus', labels['l_4'])]:
                        solph.Flow(**inflow_args)
                    }))

    return nodes, busd
コード例 #11
0
 def create_oemof_model(self, busses, _):
     sink = solph.Sink(
         label=self.name,
         inputs={busses[self.bus_in]: solph.Flow(
             variable_costs=self.electricity_costs,
             nominal_value=self.power_max
         )})
     return sink
コード例 #12
0
def test_that_the_sink_warnings_actually_get_raised():
    """ Sink doesn't warn about potentially erroneous usage.
    """
    look_out = network.Bus()
    msg = "`Sink` 'test_sink' constructed without `inputs`."
    with warnings.catch_warnings(record=True) as w:
        solph.Sink(label='test_sink', outputs={look_out: "A typo!"})
        ok_(len(w) == 1)
        eq_(msg, str(w[-1].message))
コード例 #13
0
def check_oemof_installation(silent=False):
    logging.disable(logging.CRITICAL)

    date_time_index = pd.date_range("1/1/2012", periods=5, freq="H")
    energysystem = solph.EnergySystem(timeindex=date_time_index)

    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")
    solph.Sink(label="excess_bel", inputs={bel: solph.Flow()})
    solph.Source(label="rgas", outputs={bgas: solph.Flow()})
    solph.Sink(
        label="demand",
        inputs={bel: solph.Flow(fix=[10, 20, 30, 40, 50], nominal_value=1)},
    )
    solph.Transformer(
        label="pp_gas",
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58},
    )
    om = solph.Model(energysystem)

    # check solvers
    solver = dict()
    for s in ["cbc", "glpk", "gurobi", "cplex"]:
        try:
            om.solve(solver=s)
            solver[s] = "working"
        except Exception:
            solver[s] = "not working"

    if not silent:
        print()
        print("*****************************")
        print("Solver installed with oemof:")
        print()
        for s, t in solver.items():
            print("{0}: {1}".format(s, t))
        print()
        print("*****************************")
        print("oemof successfully installed.")
        print("*****************************")
コード例 #14
0
 def create_oemof_model(self, busses, _):
     energy_demand_from_csv = solph.Sink(
         label=self.name,
         inputs={
             busses[self.bus_in]:
             solph.Flow(
                 actual_value=self.data.iloc[self.sim_params.i_interval],
                 nominal_value=self.nominal_value,
                 fixed=True)
         })
     return energy_demand_from_csv
コード例 #15
0
def run_model(params, wind_invest=False, pv_invest=False, storage_invest=False):
    logging.info('Initialize the energy system')
    energysystem = solph.EnergySystem(timeindex=date_time_index)
    Node.registry = energysystem
    logging.info('Create oemof objects')
    bgas = solph.Bus(label="natural_gas")
    bel = solph.Bus(label="electricity")

    solph.Sink(label='excess_bel', inputs={bel: solph.Flow()})

    solph.Source(label='rgas', outputs={bgas: solph.Flow(nominal_value=params['rgas_nom_val'],
                                                         summed_max=1)})

    solph.Source(label='wind', outputs={bel: solph.Flow(
            actual_value=data['wind'], nominal_value=params['wind_nom_val'], fixed=True)})

    solph.Source(label='pv', outputs={bel: solph.Flow(
           actual_value=data['pv'], nominal_value=params['pv_nom_val'], fixed=True)})

    solph.Sink(label='demand', inputs={bel: solph.Flow(
        actual_value=data['demand_el'], fixed=True, nominal_value=1)})

    solph.Transformer(
        label="pp_gas",
        inputs={bgas: solph.Flow()},
        outputs={bel: solph.Flow(nominal_value=10e10, variable_costs=50)},
        conversion_factors={bel: 0.58})


    logging.info('Optimise the energy system')

    om = solph.Model(energysystem)

    logging.info('Solve the optimization problem')
    om.solve(solver='cbc')

    energysystem.results['main'] = processing.convert_keys_to_strings(processing.results(om))
    energysystem.results['param'] = processing.convert_keys_to_strings(processing.param_results(energysystem))


    return energysystem, om
コード例 #16
0
    def test_fixed_source_variable_sink(self):
        """Constraint test with a fixed source and a variable sink.
        """

        bel = solph.Bus(label='electricityBus')

        solph.Source(label='wind', outputs={bel: solph.Flow(
            actual_value=[.43, .72, .29], nominal_value=10e5, fixed=True)})

        solph.Sink(label='excess', inputs={bel: solph.Flow(variable_costs=40)})

        self.compare_lp_files('fixed_source_variable_sink.lp')
コード例 #17
0
    def test_max_source_min_sink(self):
        """
        """
        bel = solph.Bus(label='electricityBus')

        solph.Source(label='wind', outputs={
            bel: solph.Flow(nominal_value=54, max=(.85, .95, .61))})

        solph.Sink(label='minDemand', inputs={bel: solph.Flow(
            nominal_value=54, min=(.84, .94, .59), variable_costs=14)})

        self.compare_lp_files('max_source_min_sink.lp')
コード例 #18
0
def add_mobility(table_collection, nodes):
    """

    Parameters
    ----------
    table_collection
    nodes

    Returns
    -------

    """
    mseries = table_collection["mobility demand series"]
    mtable = table_collection["mobility"]
    for region in mseries.columns.get_level_values(0).unique():
        for fuel in mseries[region].columns:
            source = mtable.loc[(region, fuel), "source"]
            source_region = mtable.loc[(region, fuel), "source region"]
            if mseries[region, fuel].sum() > 0:
                fuel_transformer = Label("process", "fuel", fuel, region)
                fuel_demand = Label("demand", "mobility", fuel, region)
                bus_label = Label("bus", "mobility", fuel, region)
                if fuel != "electricity":
                    com_bus_label = Label(
                        "bus", "commodity", source, source_region
                    )
                else:
                    com_bus_label = Label(
                        "bus", "electricity", "all", source_region
                    )
                if bus_label not in nodes:
                    nodes[bus_label] = solph.Bus(label=bus_label)
                if com_bus_label not in nodes:
                    nodes[com_bus_label] = solph.Bus(label=com_bus_label)
                cf = mtable.loc[(region, fuel), "efficiency"]
                nodes[fuel_transformer] = solph.Transformer(
                    label=fuel_transformer,
                    inputs={nodes[com_bus_label]: solph.Flow()},
                    outputs={nodes[bus_label]: solph.Flow()},
                    conversion_factors={nodes[bus_label]: cf},
                )
                fix_value = mseries[region, fuel]
                nodes[fuel_demand] = solph.Sink(
                    label=fuel_demand,
                    inputs={
                        nodes[bus_label]: solph.Flow(
                            nominal_value=1, fix=fix_value
                        )
                    },
                )
    return nodes
コード例 #19
0
def sink_dispatchable_optimize(model, dict_asset, **kwargs):
    r"""
    Define a dispatchable sink.

    The dispatchable sink is capacity-optimized, without any costs connected to the capacity of the asset.
    Applications of this asset type are: Feed-in sink, excess sink.

    See :py:func:`~.sink` for more information, including parameters.

    Notes
    -----
    Tested with:
    - test_sink_dispatchable_single_input_bus()
    - test_sink_dispatchable_multiple_input_busses()

    Returns
    -------
    Indirectly updated `model` and dict of asset in `kwargs` with the sink object.

    """
    # check if the sink has multiple input busses
    if isinstance(dict_asset[INFLOW_DIRECTION], list):
        inputs = {}
        index = 0
        for bus in dict_asset[INFLOW_DIRECTION]:
            inputs[kwargs[OEMOF_BUSSES][bus]] = solph.Flow(
                label=dict_asset[LABEL],
                variable_costs=dict_asset[DISPATCH_PRICE][VALUE][index],
                investment=solph.Investment(),
            )
            index += 1
    else:
        inputs = {
            kwargs[OEMOF_BUSSES][dict_asset[INFLOW_DIRECTION]]:
            solph.Flow(
                label=dict_asset[LABEL],
                variable_costs=dict_asset[DISPATCH_PRICE][VALUE],
                investment=solph.Investment(),
            )
        }

    # create and add excess electricity sink to micro_grid_system - variable
    sink_dispatchable = solph.Sink(
        label=dict_asset[LABEL],
        inputs=inputs,
    )
    model.add(sink_dispatchable)
    kwargs[OEMOF_SINK].update({dict_asset[LABEL]: sink_dispatchable})
    logging.debug(
        f"Added: Dispatchable sink {dict_asset[LABEL]} (to be capacity optimized) to bus {dict_asset[INFLOW_DIRECTION]}.",
    )
コード例 #20
0
    def test_invest_source_fixed_sink(self):
        """Constraint test with a fixed sink and a dispatch invest source.
        """

        bel = solph.Bus(label='electricityBus')

        solph.Source(label='pv', outputs={bel: solph.Flow(
            max=[45, 83, 65], variable_costs=13,
            investment=solph.Investment(ep_costs=123))})

        solph.Sink(label='excess', inputs={bel: solph.Flow(
            actual_value=[.5, .8, .3], nominal_value=10e4, fixed=True)})

        self.compare_lp_files('invest_source_fixed_sink.lp')
コード例 #21
0
ファイル: main.py プロジェクト: reegis/berlin_hp
def add_upstream_import_export_nodes(nodes, bus, costs):
    logging.info("Add upstream prices from {0}".format(costs["name"]))
    exp_label = Label("export", "electricity", "all", bus.label.region)
    nodes[exp_label] = solph.Sink(
        label=exp_label,
        inputs={bus: solph.Flow(variable_costs=costs["export"])},
    )

    imp_label = Label("import", "electricity", "all", bus.label.region)
    nodes[imp_label] = solph.Source(
        label=imp_label,
        outputs={bus: solph.Flow(variable_costs=costs["import"])},
    )
    return nodes
コード例 #22
0
def add_buses(it, labels, nodes, busd):
    """
    :param it:  pd.Dataframe containing tabular information for the creation of
                buses
    :param labels: dict of label strings
    :return:
    """

    for i, b in it.iterrows():

        labels['l_3'] = 'bus'

        if b['active']:
            labels['l_2'] = b['label_2']
            l_bus = oh.Label(labels['l_1'], labels['l_2'], labels['l_3'],
                             labels['l_4'])

            # check if bus already exists (due to infrastructure)
            if l_bus in busd:
                print('bus bereits vorhanden:', l_bus)

            else:
                bus = solph.Bus(label=l_bus)
                nodes.append(bus)

                busd[l_bus] = bus

                if b['excess']:
                    labels['l_3'] = 'excess'
                    nodes.append(
                        solph.Sink(
                            label=oh.Label(labels['l_1'], labels['l_2'],
                                           labels['l_3'], labels['l_4']),
                            inputs={
                                busd[l_bus]:
                                solph.Flow(variable_costs=b['excess costs'])
                            }))

                if b['shortage']:
                    labels['l_3'] = 'shortage'
                    nodes.append(
                        solph.Source(
                            label=oh.Label(labels['l_1'], labels['l_2'],
                                           labels['l_3'], labels['l_4']),
                            outputs={
                                busd[l_bus]:
                                solph.Flow(variable_costs=b['shortage costs'])
                            }))

    return nodes, busd
コード例 #23
0
ファイル: test_models.py プロジェクト: yuson95/oemof
def test_optimal_solution():
    es = solph.EnergySystem(timeindex=[1])
    bel = solph.Bus(label='bus')
    es.add(bel)
    es.add(
        solph.Sink(
            inputs={
                bel: solph.Flow(nominal_value=5, actual_value=[1], fixed=True)
            }))
    es.add(solph.Source(outputs={bel: solph.Flow(variable_costs=5)}))
    m = solph.models.Model(es, timeincrement=1)
    m.solve('cbc')
    m.results()
    outputlib.processing.meta_results(m)
コード例 #24
0
    def test_nonconvex_invest_sink_without_offset(self):
        """ Non convex invest flow without offset, with minimum.
        """
        bel = solph.Bus(label='electricityBus')

        solph.Sink(label='sink_nonconvex_invest',
                   inputs={
                       bel:
                       solph.Flow(summed_max=2.3,
                                  variable_costs=25,
                                  max=0.8,
                                  investment=solph.Investment(ep_costs=500,
                                                              minimum=15,
                                                              nonconvex=True,
                                                              maximum=172))
                   })
        self.compare_lp_files('flow_invest_without_offset.lp')
コード例 #25
0
    def add_to_oemof_model(self, busses, model):
        """Creates an oemof Sink component from the information given in the
        EnergyDemandFromCSV class, to be used in the oemof model.

        :param busses: virtual buses used in the energy system
        :type busses: dict
        :param model: current oemof model
        :type model: oemof model
        :return: oemof component
        """
        energy_demand_from_csv = solph.Sink(
            label=self.name,
            inputs={busses[self.bus_in]: solph.Flow(
                fix=self.data.iloc[self.sim_params.i_interval],
                nominal_value=self.nominal_value)})

        model.add(energy_demand_from_csv)

        return energy_demand_from_csv
コード例 #26
0
ファイル: test_models.py プロジェクト: yuson95/oemof
def test_infeasible_model():
    with tools.assert_raises_regexp(ValueError, ''):
        with warnings.catch_warnings(record=True) as w:
            es = solph.EnergySystem(timeindex=[1])
            bel = solph.Bus(label='bus')
            es.add(bel)
            es.add(
                solph.Sink(inputs={
                    bel:
                    solph.Flow(nominal_value=5, actual_value=[1], fixed=True)
                }))
            es.add(
                solph.Source(outputs={
                    bel: solph.Flow(nominal_value=4, variable_costs=5)
                }))
            m = solph.models.Model(es, timeincrement=1)
            m.solve(solver='cbc')
            assert "Optimization ended with status" in str(w[0].message)
            outputlib.processing.meta_results(m)
コード例 #27
0
ファイル: component_sink.py プロジェクト: ihartungiav/smooth
    def add_to_oemof_model(self, busses, model):
        """Creates an oemof Sink component from the information given in the Sink
        class, to be used in the oemof model.

        :param busses: virtual buses used in the energy system
        :type busses: dict
        :param model: current oemof model
        :type model: oemof model
        :return: oemof component
        """
        sink = solph.Sink(label=self.name,
                          inputs={
                              busses[self.bus_in]:
                              solph.Flow(variable_costs=self.commodity_costs,
                                         nominal_value=self.input_max)
                          })

        model.add(sink)
        return sink
コード例 #28
0
def sink_non_dispatchable(model, dict_asset, **kwargs):
    r"""
    Defines a non dispatchable sink.

    See :py:func:`~.sink` for more information, including parameters.

    Notes
    -----
    Tested with:
    - test_sink_non_dispatchable_single_input_bus()
    - test_sink_non_dispatchable_multiple_input_busses()

    Returns
    -------
    Indirectly updated `model` and dict of asset in `kwargs` with the sink object.

    """
    # check if the sink has multiple input busses
    if isinstance(dict_asset[INFLOW_DIRECTION], list):
        inputs = {}
        index = 0
        for bus in dict_asset[INFLOW_DIRECTION]:
            inputs[kwargs[OEMOF_BUSSES][bus]] = solph.Flow(
                fix=dict_asset[TIMESERIES], nominal_value=1)
            index += 1
    else:
        inputs = {
            kwargs[OEMOF_BUSSES][dict_asset[INFLOW_DIRECTION]]:
            solph.Flow(fix=dict_asset[TIMESERIES], nominal_value=1)
        }

    # create and add demand sink to micro_grid_system - fixed
    sink_demand = solph.Sink(
        label=dict_asset[LABEL],
        inputs=inputs,
    )
    model.add(sink_demand)
    kwargs[OEMOF_SINK].update({dict_asset[LABEL]: sink_demand})
    logging.debug(
        f"Added: Non-dispatchable sink {dict_asset[LABEL]} to bus {dict_asset[INFLOW_DIRECTION]}"
    )
コード例 #29
0
    def add_to_oemof_model(self, busses, model):
        """Creates an oemof Sink component from information given in
        the H2RefuelCoolingSystem class, to be used in the oemof model

        :param busses: virtual buses used in the energy system
        :type busses: dict
        :param model: current oemof model
        :type model: oemof model
        :return: oemof component
        """
        h2_refuel_cooling_system = solph.Sink(
            label=self.name,
            inputs={
                busses[self.bus_el]:
                solph.Flow(fix=self.electrical_energy.iloc[
                    self.sim_params.i_interval],
                           nominal_value=self.nominal_value)
            })

        model.add(h2_refuel_cooling_system)
        return h2_refuel_cooling_system
コード例 #30
0
def heat_sink(param, data, busses):
    r"""
    Get heat sink for Generic Model energy system.

    Parameters
    ----------
    param : dict
        JSON parameter file of user defined constants.

    data : pandas.DataFrame
        csv file of user defined time dependent parameters.

    busses : dict of solph.Bus
        Busses of the energy system.

    Note
    ----
    Heat sink uses the following parameters:
    - 'heat_price' is the constant price of the heat sold €/MWh
    - 'heat_demand' is the time series of the heat to be covered in MWh
    - 'rel_demand' is a scaling factor for the heat demand

    Topology
    --------
    Input: High temperature heat network (wnw)

    Output: none
    """
    heat_sink = solph.Sink(
        label='Wärmebedarf',
        inputs={
            busses['wnw']:
            solph.Flow(
                variable_costs=-param['param']['heat_price'],
                nominal_value=(max(data['heat_demand'] *
                                   param['param']['rel_demand'])),
                fix=(data['heat_demand'] * param['param']['rel_demand'] /
                     max(data['heat_demand'] * param['param']['rel_demand'])))
        })
    return heat_sink