コード例 #1
0
def _build_pretrainer(
    config: electra.ElectraPretrainerConfig) -> models.ElectraPretrainer:
  """Instantiates ElectraPretrainer from the config."""
  generator_encoder_cfg = config.generator_encoder
  discriminator_encoder_cfg = config.discriminator_encoder
  # Copy discriminator's embeddings to generator for easier model serialization.
  discriminator_network = encoders.build_encoder(discriminator_encoder_cfg)
  if config.tie_embeddings:
    embedding_layer = discriminator_network.get_embedding_layer()
    generator_network = encoders.build_encoder(
        generator_encoder_cfg, embedding_layer=embedding_layer)
  else:
    generator_network = encoders.build_encoder(generator_encoder_cfg)

  generator_encoder_cfg = generator_encoder_cfg.get()
  return models.ElectraPretrainer(
      generator_network=generator_network,
      discriminator_network=discriminator_network,
      vocab_size=generator_encoder_cfg.vocab_size,
      num_classes=config.num_classes,
      sequence_length=config.sequence_length,
      num_token_predictions=config.num_masked_tokens,
      mlm_activation=tf_utils.get_activation(
          generator_encoder_cfg.hidden_activation),
      mlm_initializer=tf.keras.initializers.TruncatedNormal(
          stddev=generator_encoder_cfg.initializer_range),
      classification_heads=[
          layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
      ],
      disallow_correct=config.disallow_correct)
コード例 #2
0
 def build_model(self, params=None):
   config = params or self.task_config.model
   encoder_cfg = config.encoder
   encoder_network = self._build_encoder(encoder_cfg)
   cls_heads = [
       layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
   ] if config.cls_heads else []
   return models.BertPretrainerV2(
       mlm_activation=tf_utils.get_activation(config.mlm_activation),
       mlm_initializer=tf.keras.initializers.TruncatedNormal(
           stddev=config.mlm_initializer_range),
       encoder_network=encoder_network,
       classification_heads=cls_heads)
コード例 #3
0
ファイル: distillation.py プロジェクト: ykate1998/models
  def _build_pretrainer(self, pretrainer_cfg: bert.PretrainerConfig, name: str):
    """Builds pretrainer from config and encoder."""
    encoder = encoders.build_encoder(pretrainer_cfg.encoder)
    if pretrainer_cfg.cls_heads:
      cls_heads = [
          layers.ClassificationHead(**cfg.as_dict())
          for cfg in pretrainer_cfg.cls_heads
      ]
    else:
      cls_heads = []

    masked_lm = layers.MobileBertMaskedLM(
        embedding_table=encoder.get_embedding_table(),
        activation=tf_utils.get_activation(pretrainer_cfg.mlm_activation),
        initializer=tf.keras.initializers.TruncatedNormal(
            stddev=pretrainer_cfg.mlm_initializer_range),
        name='cls/predictions')

    pretrainer = models.BertPretrainerV2(
        encoder_network=encoder,
        classification_heads=cls_heads,
        customized_masked_lm=masked_lm,
        name=name)
    return pretrainer
コード例 #4
0
    def prepare_config(self, teacher_block_num, student_block_num,
                       transfer_teacher_layers):
        # using small model for testing
        task_config = distillation.BertDistillationTaskConfig(
            teacher_model=bert.PretrainerConfig(encoder=encoders.EncoderConfig(
                type='mobilebert',
                mobilebert=encoders.MobileBertEncoderConfig(
                    num_blocks=teacher_block_num)),
                                                cls_heads=[
                                                    bert.ClsHeadConfig(
                                                        inner_dim=256,
                                                        num_classes=2,
                                                        dropout_rate=0.1,
                                                        name='next_sentence')
                                                ],
                                                mlm_activation='gelu'),
            student_model=bert.PretrainerConfig(encoder=encoders.EncoderConfig(
                type='mobilebert',
                mobilebert=encoders.MobileBertEncoderConfig(
                    num_blocks=student_block_num)),
                                                cls_heads=[
                                                    bert.ClsHeadConfig(
                                                        inner_dim=256,
                                                        num_classes=2,
                                                        dropout_rate=0.1,
                                                        name='next_sentence')
                                                ],
                                                mlm_activation='relu'),
            train_data=pretrain_dataloader.BertPretrainDataConfig(
                input_path='dummy',
                max_predictions_per_seq=76,
                seq_length=512,
                global_batch_size=10),
            validation_data=pretrain_dataloader.BertPretrainDataConfig(
                input_path='dummy',
                max_predictions_per_seq=76,
                seq_length=512,
                global_batch_size=10))

        # set only 1 step for each stage
        progressive_config = distillation.BertDistillationProgressiveConfig()
        progressive_config.layer_wise_distill_config.transfer_teacher_layers = (
            transfer_teacher_layers)
        progressive_config.layer_wise_distill_config.num_steps = 1
        progressive_config.pretrain_distill_config.num_steps = 1

        optimization_config = optimization.OptimizationConfig(
            optimizer=optimization.OptimizerConfig(
                type='lamb',
                lamb=optimization.LAMBConfig(weight_decay_rate=0.0001,
                                             exclude_from_weight_decay=[
                                                 'LayerNorm', 'layer_norm',
                                                 'bias', 'no_norm'
                                             ])),
            learning_rate=optimization.LrConfig(
                type='polynomial',
                polynomial=optimization.PolynomialLrConfig(
                    initial_learning_rate=1.5e-3,
                    decay_steps=10000,
                    end_learning_rate=1.5e-3)),
            warmup=optimization.WarmupConfig(
                type='linear',
                linear=optimization.LinearWarmupConfig(
                    warmup_learning_rate=0)))

        exp_config = cfg.ExperimentConfig(
            task=task_config,
            trainer=prog_trainer_lib.ProgressiveTrainerConfig(
                progressive=progressive_config,
                optimizer_config=optimization_config))

        # Create a teacher model checkpoint.
        teacher_encoder = encoders.build_encoder(
            task_config.teacher_model.encoder)
        pretrainer_config = task_config.teacher_model
        if pretrainer_config.cls_heads:
            teacher_cls_heads = [
                layers.ClassificationHead(**cfg.as_dict())
                for cfg in pretrainer_config.cls_heads
            ]
        else:
            teacher_cls_heads = []

        masked_lm = layers.MobileBertMaskedLM(
            embedding_table=teacher_encoder.get_embedding_table(),
            activation=tf_utils.get_activation(
                pretrainer_config.mlm_activation),
            initializer=tf.keras.initializers.TruncatedNormal(
                stddev=pretrainer_config.mlm_initializer_range),
            name='cls/predictions')
        teacher_pretrainer = models.BertPretrainerV2(
            encoder_network=teacher_encoder,
            classification_heads=teacher_cls_heads,
            customized_masked_lm=masked_lm)

        # The model variables will be created after the forward call.
        _ = teacher_pretrainer(teacher_pretrainer.inputs)
        teacher_pretrainer_ckpt = tf.train.Checkpoint(
            **teacher_pretrainer.checkpoint_items)
        teacher_ckpt_path = os.path.join(self.get_temp_dir(),
                                         'teacher_model.ckpt')
        teacher_pretrainer_ckpt.save(teacher_ckpt_path)
        exp_config.task.teacher_model_init_checkpoint = self.get_temp_dir()

        return exp_config