def _parse_predict_data(self, data): """Parses data for prediction. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: A dictionary of {'images': image, 'labels': labels} where image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. source_ids: Source image id. Default value -1 if the source id is empty in the groundtruth annotation. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. """ # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. _ = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'image_info': image_info, } if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'height': data['height'], 'width': data['width'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = dataloader_utils.process_source_id( groundtruths['source_id']) groundtruths = dataloader_utils.pad_groundtruths_to_fixed_size( groundtruths, self._max_num_instances) # TODO(yeqing): Remove the `groundtrtuh` layer key (no longer needed). labels['groundtruths'] = groundtruths inputs = { 'image': image, 'image_info': image_info, } return inputs, labels
def _parse_predict_data(self, data): """Parses data for prediction.""" # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size(self._output_size, 2**self._max_level), aug_scale_min=1.0, aug_scale_max=1.0) image_height, image_width, _ = image.get_shape().as_list() # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Compute Anchor boxes. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, } # If mode is PREDICT_WITH_GT, returns groundtruths and training targets # in labels. if self._mode == ModeKeys.PREDICT_WITH_GT: # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(data['groundtruth_boxes'], image_shape) groundtruths = { 'source_id': data['source_id'], 'num_detections': tf.shape(data['groundtruth_classes']), 'boxes': boxes, 'classes': data['groundtruth_classes'], 'areas': data['groundtruth_area'], 'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), } groundtruths['source_id'] = process_source_id(groundtruths['source_id']) groundtruths = pad_groundtruths_to_fixed_size(groundtruths, self._max_num_instances) labels['groundtruths'] = groundtruths # Computes training objective for evaluation loss. classes = data['groundtruth_classes'] image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) # Assigns anchors. anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) labels['cls_targets'] = cls_targets labels['box_targets'] = box_targets labels['num_positives'] = num_positives return image, labels
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtruths = tf.shape(classes)[0] with tf.control_dependencies([num_groundtruths, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = input_utils.random_horizontal_flip( image, boxes, masks) else: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Transfer boxes to the original image space and do normalization. cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_utils.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.RpnAnchorLabeler(input_anchor, self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) inputs = { 'image': image, 'image_info': image_info, } # Packs labels for model_fn outputs. labels = { 'anchor_boxes': input_anchor.multilevel_boxes, 'image_info': image_info, 'rpn_score_targets': rpn_score_targets, 'rpn_box_targets': rpn_box_targets, } inputs['gt_boxes'] = input_utils.pad_to_fixed_size( boxes, self._max_num_instances, -1) inputs['gt_classes'] = input_utils.pad_to_fixed_size( classes, self._max_num_instances, -1) if self._include_mask: inputs['gt_masks'] = input_utils.pad_to_fixed_size( masks, self._max_num_instances, -1) return inputs, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training and self._is_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) # Gets original image and its size. image = data['image'] image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = input_utils.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes = input_utils.random_horizontal_flip(image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_utils.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = input_utils.resize_and_crop_image( image, self._output_size, padded_size=input_utils.compute_padded_size(self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = input_utils.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_utils.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) # Assigns anchors. input_anchor = anchor.Anchor(self._min_level, self._max_level, self._num_scales, self._aspect_ratios, self._anchor_size, (image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(input_anchor, self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, num_positives) = anchor_labeler.label_anchors( boxes, tf.cast(tf.expand_dims(classes, axis=1), tf.float32)) # If bfloat16 is used, casts input image to tf.bfloat16. if self._use_bfloat16: image = tf.cast(image, dtype=tf.bfloat16) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': input_anchor.multilevel_boxes, 'num_positives': num_positives, 'image_info': image_info, } return image, labels