def test_end_to_end_multi_eval(self, distribution_strategy, flag_mode): model_dir = self.get_temp_dir() experiment_config = configs.MultiEvalExperimentConfig( task=test_utils.FooConfig(), eval_tasks=(configs.TaskRoutine( task_name='foo', task_config=test_utils.FooConfig(), eval_steps=2), configs.TaskRoutine( task_name='bar', task_config=test_utils.BarConfig(), eval_steps=3))) experiment_config = params_dict.override_params_dict( experiment_config, self._test_config, is_strict=False) with distribution_strategy.scope(): train_task = task_factory.get_task(experiment_config.task) eval_tasks = [ task_factory.get_task(config.task_config, name=config.task_name) for config in experiment_config.eval_tasks ] train_lib.run_experiment_with_multitask_eval( distribution_strategy=distribution_strategy, train_task=train_task, eval_tasks=eval_tasks, mode=flag_mode, params=experiment_config, model_dir=model_dir)
def test_trainer_with_configs(self, distribution): config = configs.MultiTaskConfig(task_routines=( configs.TaskRoutine(task_name="foo", task_config=test_utils.FooConfig(), task_weight=3.0), configs.TaskRoutine(task_name="bar", task_config=test_utils.BarConfig(), task_weight=1.0))) with distribution.scope(): test_multitask = multitask.MultiTask.from_config(config) test_optimizer = tf.keras.optimizers.SGD(0.1) model = test_utils.MockMultiTaskModel() num_step = 1000 sampler = task_sampler.AnnealingTaskSampler( task_weights=test_multitask.task_weights, steps_per_epoch=num_step / 5, total_steps=num_step) test_trainer = interleaving_trainer.MultiTaskInterleavingTrainer( multi_task=test_multitask, multi_task_model=model, optimizer=test_optimizer, task_sampler=sampler) results = test_trainer.train( tf.convert_to_tensor(num_step, dtype=tf.int32)) self.assertContainsSubset(["training_loss", "bar_acc"], results["bar"].keys()) self.assertContainsSubset(["training_loss", "foo_acc"], results["foo"].keys()) self.assertEqual(test_trainer.global_step.numpy(), num_step) bar_sampled_step = test_trainer.task_step_counter("bar").numpy() foo_sampled_step = test_trainer.task_step_counter("foo").numpy() self.assertEqual(bar_sampled_step + foo_sampled_step, num_step)
def test_multitask_interleaving_trainer(self, distribution): with distribution.scope(): tasks = [ test_utils.MockFooTask(params=test_utils.FooConfig(), name="foo"), test_utils.MockBarTask(params=test_utils.BarConfig(), name="bar") ] test_multitask = multitask.MultiTask(tasks=tasks) test_optimizer = tf.keras.optimizers.SGD(0.1) model = test_utils.MockMultiTaskModel() sampler = task_sampler.UniformTaskSampler( task_weights=test_multitask.task_weights) test_trainer = interleaving_trainer.MultiTaskInterleavingTrainer( multi_task=test_multitask, multi_task_model=model, optimizer=test_optimizer, task_sampler=sampler) results = test_trainer.train( tf.convert_to_tensor(5, dtype=tf.int32)) self.assertContainsSubset(["training_loss", "bar_acc"], results["bar"].keys()) self.assertContainsSubset(["training_loss", "foo_acc"], results["foo"].keys()) self.assertNotIn("total_loss", results)
def test_trainer_with_configs(self): config = configs.MultiTaskConfig( task_routines=(configs.TaskRoutine( task_name="foo", task_config=test_utils.FooConfig(), task_weight=0.5), configs.TaskRoutine( task_name="bar", task_config=test_utils.BarConfig(), task_weight=0.5))) test_multitask = multitask.MultiTask.from_config(config) test_optimizer = tf.keras.optimizers.SGD(0.1) model = test_utils.MockMultiTaskModel() test_trainer = base_trainer.MultiTaskBaseTrainer( multi_task=test_multitask, multi_task_model=model, optimizer=test_optimizer) results = test_trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertContainsSubset(["training_loss", "bar_acc"], results["bar"].keys()) self.assertContainsSubset(["training_loss", "foo_acc"], results["foo"].keys()) self.assertEqual(test_multitask.task_weight("foo"), 0.5) self.assertEqual(test_trainer.global_step.numpy(), 5) self.assertIn("learning_rate", results)
def test_multitask_joint_trainer(self, distribution): with distribution.scope(): tasks = [ test_utils.MockFooTask(params=test_utils.FooConfig(), name="foo"), test_utils.MockBarTask(params=test_utils.BarConfig(), name="bar") ] task_weights = {"foo": 1.0, "bar": 1.0} test_multitask = multitask.MultiTask( tasks=tasks, task_weights=task_weights) test_optimizer = tf.keras.optimizers.SGD(0.1) model = test_utils.MockMultiTaskModel() test_trainer = base_trainer.MultiTaskBaseTrainer( multi_task=test_multitask, multi_task_model=model, optimizer=test_optimizer) results = test_trainer.train(tf.convert_to_tensor(5, dtype=tf.int32)) self.assertContainsSubset(["training_loss", "bar_acc"], results["bar"].keys()) self.assertContainsSubset(["training_loss", "foo_acc"], results["foo"].keys())
def test_end_to_end(self, distribution_strategy, flag_mode): model_dir = self.get_temp_dir() experiment_config = configs.MultiTaskExperimentConfig( task=configs.MultiTaskConfig( task_routines=( configs.TaskRoutine( task_name='foo', task_config=test_utils.FooConfig()), configs.TaskRoutine( task_name='bar', task_config=test_utils.BarConfig())))) experiment_config = params_dict.override_params_dict( experiment_config, self._test_config, is_strict=False) with distribution_strategy.scope(): test_multitask = multitask.MultiTask.from_config(experiment_config.task) model = test_utils.MockMultiTaskModel() train_lib.run_experiment( distribution_strategy=distribution_strategy, task=test_multitask, model=model, mode=flag_mode, params=experiment_config, model_dir=model_dir)