コード例 #1
0
    def test_network_invocation(self, output_range, out_seq_len):
        hidden_size = 32
        sequence_length = 21
        vocab_size = 57
        num_types = 7
        # Create a small BertEncoder for testing.
        test_network = bert_encoder.BertEncoder(vocab_size=vocab_size,
                                                hidden_size=hidden_size,
                                                num_attention_heads=2,
                                                num_layers=3,
                                                type_vocab_size=num_types,
                                                output_range=output_range)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        data, pooled = test_network([word_ids, mask, type_ids])

        # Create a model based off of this network:
        model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])

        # Invoke the model. We can't validate the output data here (the model is too
        # complex) but this will catch structural runtime errors.
        batch_size = 3
        word_id_data = np.random.randint(vocab_size,
                                         size=(batch_size, sequence_length))
        mask_data = np.random.randint(2, size=(batch_size, sequence_length))
        type_id_data = np.random.randint(num_types,
                                         size=(batch_size, sequence_length))
        outputs = model.predict([word_id_data, mask_data, type_id_data])
        self.assertEqual(outputs[0].shape[1], out_seq_len)

        # Creates a BertEncoder with max_sequence_length != sequence_length
        max_sequence_length = 128
        test_network = bert_encoder.BertEncoder(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            max_sequence_length=max_sequence_length,
            num_attention_heads=2,
            num_layers=3,
            type_vocab_size=num_types)
        data, pooled = test_network([word_ids, mask, type_ids])
        model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
        outputs = model.predict([word_id_data, mask_data, type_id_data])
        self.assertEqual(outputs[0].shape[1], sequence_length)

        # Creates a BertEncoder with embedding_width != hidden_size
        test_network = bert_encoder.BertEncoder(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            max_sequence_length=max_sequence_length,
            num_attention_heads=2,
            num_layers=3,
            type_vocab_size=num_types,
            embedding_width=16)
        data, pooled = test_network([word_ids, mask, type_ids])
        model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled])
        outputs = model.predict([word_id_data, mask_data, type_id_data])
        self.assertEqual(outputs[0].shape[-1], hidden_size)
        self.assertTrue(hasattr(test_network, "_embedding_projection"))
コード例 #2
0
  def test_network_creation(self):
    hidden_size = 32
    sequence_length = 21
    # Create a small BertEncoder for testing.
    test_network = bert_encoder.BertEncoder(
        vocab_size=100,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=3)
    # Create the inputs (note that the first dimension is implicit).
    word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
    data, pooled = test_network([word_ids, mask, type_ids])

    self.assertIsInstance(test_network.transformer_layers, list)
    self.assertLen(test_network.transformer_layers, 3)
    self.assertIsInstance(test_network.pooler_layer, tf.keras.layers.Dense)

    expected_data_shape = [None, sequence_length, hidden_size]
    expected_pooled_shape = [None, hidden_size]
    self.assertAllEqual(expected_data_shape, data.shape.as_list())
    self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

    # The default output dtype is float32.
    self.assertAllEqual(tf.float32, data.dtype)
    self.assertAllEqual(tf.float32, pooled.dtype)

    test_network_dict = bert_encoder.BertEncoder(
        vocab_size=100,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=3,
        dict_outputs=True)
    # Create the inputs (note that the first dimension is implicit).
    inputs = dict(
        input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)
    _ = test_network_dict(inputs)

    test_network_dict.set_weights(test_network.get_weights())
    batch_size = 2
    vocab_size = 100
    num_types = 2
    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(
        num_types, size=(batch_size, sequence_length))
    list_outputs = test_network([word_id_data, mask_data, type_id_data])
    dict_outputs = test_network_dict(
        dict(
            input_word_ids=word_id_data,
            input_mask=mask_data,
            input_type_ids=type_id_data))
    self.assertAllEqual(list_outputs[0], dict_outputs["sequence_output"])
    self.assertAllEqual(list_outputs[1], dict_outputs["pooled_output"])
コード例 #3
0
    def test_all_encoder_outputs_network_creation(self):
        hidden_size = 32
        sequence_length = 21
        # Create a small BertEncoder for testing.
        test_network = bert_encoder.BertEncoder(
            vocab_size=100,
            hidden_size=hidden_size,
            num_attention_heads=2,
            num_layers=3,
            return_all_encoder_outputs=True)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        all_encoder_outputs, pooled = test_network([word_ids, mask, type_ids])

        expected_data_shape = [None, sequence_length, hidden_size]
        expected_pooled_shape = [None, hidden_size]
        self.assertLen(all_encoder_outputs, 3)
        for data in all_encoder_outputs:
            self.assertAllEqual(expected_data_shape, data.shape.as_list())
        self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

        # The default output dtype is float32.
        self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype)
        self.assertAllEqual(tf.float32, pooled.dtype)
コード例 #4
0
    def test_v2_network_creation_with_float16_dtype(self):
        hidden_size = 32
        sequence_length = 21
        tf.keras.mixed_precision.set_global_policy("mixed_float16")
        # Create a small BertEncoder for testing.
        test_network = bert_encoder.BertEncoder(vocab_size=100,
                                                hidden_size=hidden_size,
                                                num_attention_heads=2,
                                                num_layers=3,
                                                dict_outputs=True)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        dict_outputs = test_network([word_ids, mask, type_ids])
        data = dict_outputs["sequence_output"]
        pooled = dict_outputs["pooled_output"]

        expected_data_shape = [None, sequence_length, hidden_size]
        expected_pooled_shape = [None, hidden_size]
        self.assertAllEqual(expected_data_shape, data.shape.as_list())
        self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

        # If float_dtype is set to float16, the data output is float32 (from a layer
        # norm) and pool output should be float16.
        self.assertAllEqual(tf.float32, data.dtype)
        self.assertAllEqual(tf.float16, pooled.dtype)
コード例 #5
0
    def test_v2_network_creation(self):
        hidden_size = 32
        sequence_length = 21
        # Create a small BertEncoder for testing.
        test_network = bert_encoder.BertEncoder(vocab_size=100,
                                                hidden_size=hidden_size,
                                                num_attention_heads=2,
                                                num_layers=3,
                                                dict_outputs=True)
        # Create the inputs (note that the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        dict_outputs = test_network([word_ids, mask, type_ids])
        data = dict_outputs["sequence_output"]
        pooled = dict_outputs["pooled_output"]

        self.assertIsInstance(test_network.transformer_layers, list)
        self.assertLen(test_network.transformer_layers, 3)
        self.assertIsInstance(test_network.pooler_layer, tf.keras.layers.Dense)

        expected_data_shape = [None, sequence_length, hidden_size]
        expected_pooled_shape = [None, hidden_size]
        self.assertAllEqual(expected_data_shape, data.shape.as_list())
        self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list())

        # The default output dtype is float32.
        self.assertAllEqual(tf.float32, data.dtype)
        self.assertAllEqual(tf.float32, pooled.dtype)
コード例 #6
0
    def test_serialize_deserialize(self):
        # Create a network object that sets all of its config options.
        kwargs = dict(vocab_size=100,
                      hidden_size=32,
                      num_layers=3,
                      num_attention_heads=2,
                      max_sequence_length=21,
                      type_vocab_size=12,
                      inner_dim=1223,
                      inner_activation="relu",
                      output_dropout=0.05,
                      attention_dropout=0.22,
                      initializer="glorot_uniform",
                      output_range=-1,
                      embedding_width=16,
                      embedding_layer=None,
                      norm_first=False)
        network = bert_encoder.BertEncoder(**kwargs)

        # Validate that the config can be forced to JSON.
        _ = network.to_json()

        # Tests model saving/loading.
        model_path = self.get_temp_dir() + "/model"
        network.save(model_path)
        _ = tf.keras.models.load_model(model_path)
コード例 #7
0
  def test_serialize_deserialize(self):
    tf.keras.mixed_precision.experimental.set_policy("mixed_float16")
    # Create a network object that sets all of its config options.
    kwargs = dict(
        vocab_size=100,
        hidden_size=32,
        num_layers=3,
        num_attention_heads=2,
        max_sequence_length=21,
        type_vocab_size=12,
        intermediate_size=1223,
        activation="relu",
        dropout_rate=0.05,
        attention_dropout_rate=0.22,
        initializer="glorot_uniform",
        return_all_encoder_outputs=False,
        output_range=-1,
        embedding_width=16)
    network = bert_encoder.BertEncoder(**kwargs)

    expected_config = dict(kwargs)
    expected_config["activation"] = tf.keras.activations.serialize(
        tf.keras.activations.get(expected_config["activation"]))
    expected_config["initializer"] = tf.keras.initializers.serialize(
        tf.keras.initializers.get(expected_config["initializer"]))
    self.assertEqual(network.get_config(), expected_config)

    # Create another network object from the first object's config.
    new_network = bert_encoder.BertEncoder.from_config(network.get_config())

    # Validate that the config can be forced to JSON.
    _ = new_network.to_json()

    # If the serialization was successful, the new config should match the old.
    self.assertAllEqual(network.get_config(), new_network.get_config())
コード例 #8
0
  def test_weights_forward_compatible(self):
    batch_size = 3

    hidden_size = 32
    sequence_length = 21
    vocab_size = 57
    num_types = 7

    kwargs = dict(
        vocab_size=vocab_size,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=3,
        type_vocab_size=num_types,
        output_range=None)

    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(
        num_types, size=(batch_size, sequence_length))
    data = dict(
        input_word_ids=word_id_data,
        input_mask=mask_data,
        input_type_ids=type_id_data)

    # Create small BertEncoders for testing.
    new_net = bert_encoder.BertEncoderV2(**kwargs)
    _ = new_net(data)
    kwargs["dict_outputs"] = True
    old_net = bert_encoder.BertEncoder(**kwargs)
    _ = old_net(data)
    new_net._embedding_layer.set_weights(old_net._embedding_layer.get_weights())
    new_net._position_embedding_layer.set_weights(
        old_net._position_embedding_layer.get_weights())
    new_net._type_embedding_layer.set_weights(
        old_net._type_embedding_layer.get_weights())
    new_net._embedding_norm_layer.set_weights(
        old_net._embedding_norm_layer.get_weights())
    # embedding_dropout has no weights.

    if hasattr(old_net, "_embedding_projection"):
      new_net._embedding_projection.set_weights(
          old_net._embedding_projection.get_weights())
    # attention_mask_layer has no weights.

    new_net._pooler_layer.set_weights(old_net._pooler_layer.get_weights())

    for otl, ntl in zip(old_net._transformer_layers,
                        new_net._transformer_layers):
      ntl.set_weights(otl.get_weights())

    def check_output_close(data, net1, net2):
      output1 = net1(data)
      output2 = net2(data)
      for key in output1:
        self.assertAllClose(output1[key], output2[key])

    check_output_close(data, old_net, new_net)
コード例 #9
0
    def test_layer_invocation_with_external_logits(self):
        vocab_size = 100
        sequence_length = 32
        hidden_size = 64
        num_predictions = 21
        xformer_stack = bert_encoder.BertEncoder(
            vocab_size=vocab_size,
            num_layers=1,
            hidden_size=hidden_size,
            num_attention_heads=4,
        )
        test_layer = self.create_layer(vocab_size=vocab_size,
                                       hidden_size=hidden_size,
                                       xformer_stack=xformer_stack,
                                       output='predictions')
        logit_layer = self.create_layer(vocab_size=vocab_size,
                                        hidden_size=hidden_size,
                                        xformer_stack=xformer_stack,
                                        output='logits')

        # Create a model from the masked LM layer.
        lm_input_tensor = tf.keras.Input(shape=(sequence_length, hidden_size))
        masked_positions = tf.keras.Input(shape=(num_predictions, ),
                                          dtype=tf.int32)
        output = test_layer(lm_input_tensor, masked_positions)
        logit_output = logit_layer(lm_input_tensor, masked_positions)
        logit_output = tf.keras.layers.Activation(
            tf.nn.log_softmax)(logit_output)
        logit_layer.set_weights(test_layer.get_weights())
        model = tf.keras.Model([lm_input_tensor, masked_positions], output)
        logits_model = tf.keras.Model(([lm_input_tensor, masked_positions]),
                                      logit_output)

        # Invoke the masked LM on some fake data to make sure there are no runtime
        # errors in the code.
        batch_size = 3
        lm_input_data = 10 * np.random.random_sample(
            (batch_size, sequence_length, hidden_size))
        masked_position_data = np.random.randint(sequence_length,
                                                 size=(batch_size,
                                                       num_predictions))
        # ref_outputs = model.predict([lm_input_data, masked_position_data])
        # outputs = logits_model.predict([lm_input_data, masked_position_data])
        ref_outputs = model([lm_input_data, masked_position_data])
        outputs = logits_model([lm_input_data, masked_position_data])

        # Ensure that the tensor shapes are correct.
        expected_output_shape = (batch_size, num_predictions, vocab_size)
        self.assertEqual(expected_output_shape, ref_outputs.shape)
        self.assertEqual(expected_output_shape, outputs.shape)
        self.assertAllClose(ref_outputs, outputs)
コード例 #10
0
  def test_keras_model_checkpoint_forward_compatible(self):
    batch_size = 3

    hidden_size = 32
    sequence_length = 21
    vocab_size = 57
    num_types = 7

    kwargs = dict(
        vocab_size=vocab_size,
        hidden_size=hidden_size,
        num_attention_heads=2,
        num_layers=3,
        type_vocab_size=num_types,
        output_range=None)

    word_id_data = np.random.randint(
        vocab_size, size=(batch_size, sequence_length))
    mask_data = np.random.randint(2, size=(batch_size, sequence_length))
    type_id_data = np.random.randint(
        num_types, size=(batch_size, sequence_length))
    data = dict(
        input_word_ids=word_id_data,
        input_mask=mask_data,
        input_type_ids=type_id_data)

    kwargs["dict_outputs"] = True
    old_net = bert_encoder.BertEncoder(**kwargs)
    inputs = old_net.inputs
    outputs = old_net(inputs)
    old_model = tf.keras.Model(inputs=inputs, outputs=outputs)
    old_model_outputs = old_model(data)
    ckpt = tf.train.Checkpoint(net=old_model)
    path = ckpt.save(self.get_temp_dir())
    del kwargs["dict_outputs"]
    new_net = bert_encoder.BertEncoderV2(**kwargs)
    inputs = new_net.inputs
    outputs = new_net(inputs)
    new_model = tf.keras.Model(inputs=inputs, outputs=outputs)
    new_ckpt = tf.train.Checkpoint(net=new_model)
    status = new_ckpt.restore(path)

    status.assert_existing_objects_matched()
    new_model_outputs = new_model(data)

    self.assertAllEqual(old_model_outputs.keys(), new_model_outputs.keys())
    for key in old_model_outputs:
      self.assertAllClose(old_model_outputs[key], new_model_outputs[key])
コード例 #11
0
  def create_layer(self,
                   vocab_size,
                   hidden_size,
                   output='predictions',
                   xformer_stack=None):
    # First, create a transformer stack that we can use to get the LM's
    # vocabulary weight.
    if xformer_stack is None:
      xformer_stack = bert_encoder.BertEncoder(
          vocab_size=vocab_size,
          num_layers=1,
          hidden_size=hidden_size,
          num_attention_heads=4,
      )

    # Create a maskedLM from the transformer stack.
    test_layer = masked_lm.MaskedLM(
        embedding_table=xformer_stack.get_embedding_table(), output=output)
    return test_layer
コード例 #12
0
    def test_serialize_deserialize(self):
        # Create a network object that sets all of its config options.
        kwargs = dict(vocab_size=100,
                      hidden_size=32,
                      num_layers=3,
                      num_attention_heads=2,
                      max_sequence_length=21,
                      type_vocab_size=12,
                      intermediate_size=1223,
                      activation="relu",
                      dropout_rate=0.05,
                      attention_dropout_rate=0.22,
                      initializer="glorot_uniform",
                      return_all_encoder_outputs=False,
                      output_range=-1,
                      embedding_width=16,
                      dict_outputs=True,
                      embedding_layer=None,
                      norm_first=False)
        network = bert_encoder.BertEncoder(**kwargs)
        expected_config = dict(kwargs)
        expected_config["activation"] = tf.keras.activations.serialize(
            tf.keras.activations.get(expected_config["activation"]))
        expected_config["initializer"] = tf.keras.initializers.serialize(
            tf.keras.initializers.get(expected_config["initializer"]))

        self.assertEqual(network.get_config(), expected_config)
        # Create another network object from the first object's config.
        new_network = bert_encoder.BertEncoder.from_config(
            network.get_config())

        # Validate that the config can be forced to JSON.
        _ = network.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(network.get_config(), new_network.get_config())

        # Tests model saving/loading.
        model_path = self.get_temp_dir() + "/model"
        network.save(model_path)
        _ = tf.keras.models.load_model(model_path)