コード例 #1
0
    def test_bert_trainer(self):
        """Validate that the Keras object can be created."""
        # Build a transformer network to use within the BERT trainer.
        vocab_size = 100
        sequence_length = 512
        test_network = networks.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=2,
            sequence_length=sequence_length)

        # Create a BERT trainer with the created network.
        num_classes = 3
        num_token_predictions = 2
        bert_trainer_model = bert_pretrainer.BertPretrainer(
            test_network,
            num_classes=num_classes,
            num_token_predictions=num_token_predictions)

        # Create a set of 2-dimensional inputs (the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        lm_mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)

        # Invoke the trainer model on the inputs. This causes the layer to be built.
        lm_outs, cls_outs = bert_trainer_model(
            [word_ids, mask, type_ids, lm_mask])

        # Validate that the outputs are of the expected shape.
        expected_lm_shape = [None, num_token_predictions, vocab_size]
        expected_classification_shape = [None, num_classes]
        self.assertAllEqual(expected_lm_shape, lm_outs.shape.as_list())
        self.assertAllEqual(expected_classification_shape,
                            cls_outs.shape.as_list())
コード例 #2
0
    def test_bert_trainer_tensor_call(self):
        """Validate that the Keras object can be invoked."""
        # Build a transformer network to use within the BERT trainer. (Here, we use
        # a short sequence_length for convenience.)
        test_network = networks.TransformerEncoder(vocab_size=100,
                                                   num_layers=2,
                                                   sequence_length=2)

        # Create a BERT trainer with the created network.
        bert_trainer_model = bert_pretrainer.BertPretrainer(
            test_network, num_classes=2, num_token_predictions=2)

        # Create a set of 2-dimensional data tensors to feed into the model.
        word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
        mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
        type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
        lm_mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)

        # Invoke the trainer model on the tensors. In Eager mode, this does the
        # actual calculation. (We can't validate the outputs, since the network is
        # too complex: this simply ensures we're not hitting runtime errors.)
        _, _ = bert_trainer_model([word_ids, mask, type_ids, lm_mask])
コード例 #3
0
  def test_masked_lm(self):
    example_sentence = [
        'alice', 'became', '[MASK]', 'after', 'felt', 'left', 'out', 'by',
        'her', 'friends.'
    ]
    num_token_predictions = 1
    lm_mask = [2]

    bert_unk_token_id = 100
    bert_dir = 'data/bert/keras/cased_L-12_H-768_A-12'
    bert_vocab_file = "{}/vocab.txt".format(bert_dir)
    bert_config_file = "{}/bert_config.json".format(bert_dir)
    bert_checkpoint_file = "{}/bert_model.ckpt".format(bert_dir)
    num_classes = 2
    sequence_length = len(example_sentence)
    vocab = load_vocab(bert_vocab_file)

    token_to_id_layer = token_to_id.TokenToIdLayer(bert_vocab_file,
                                                   bert_unk_token_id)

    bert_config = BertConfig.from_json_file(bert_config_file)
    transformer_encoder = get_transformer_encoder(bert_config, sequence_length)

    pretrainer_model = bert_pretrainer.BertPretrainer(
        network=transformer_encoder,
        num_classes=num_classes,
        num_token_predictions=num_token_predictions,
        output='predictions')

    checkpoint = tf.train.Checkpoint(model=transformer_encoder)
    status = checkpoint.restore(bert_checkpoint_file)

    with tf.compat.v1.Session() as sess:
      status.initialize_or_restore(sess)
      values = sess.run(transformer_encoder.trainable_variables)
      print(values[-1])
      j = 1
コード例 #4
0
    def test_serialize_deserialize(self):
        """Validate that the BERT trainer can be serialized and deserialized."""
        # Build a transformer network to use within the BERT trainer. (Here, we use
        # a short sequence_length for convenience.)
        test_network = networks.TransformerEncoder(vocab_size=100,
                                                   num_layers=2,
                                                   sequence_length=5)

        # Create a BERT trainer with the created network. (Note that all the args
        # are different, so we can catch any serialization mismatches.)
        bert_trainer_model = bert_pretrainer.BertPretrainer(
            test_network, num_classes=4, num_token_predictions=3)

        # Create another BERT trainer via serialization and deserialization.
        config = bert_trainer_model.get_config()
        new_bert_trainer_model = bert_pretrainer.BertPretrainer.from_config(
            config)

        # Validate that the config can be forced to JSON.
        _ = new_bert_trainer_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(bert_trainer_model.get_config(),
                            new_bert_trainer_model.get_config())
コード例 #5
0
def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
      initializer: Initializer for weights in BertPretrainer.

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """
  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)

  transformer_encoder = _get_transformer_encoder(bert_config, seq_length)
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
  pretrainer_model = bert_pretrainer.BertPretrainer(
      network=transformer_encoder,
      num_classes=2,  # The next sentence prediction label has two classes.
      num_token_predictions=max_predictions_per_seq,
      initializer=initializer,
      output='predictions')

  lm_output, sentence_output = pretrainer_model(
      [input_word_ids, input_mask, input_type_ids, masked_lm_positions])

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(
      vocab_size=bert_config.vocab_size)
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)
  keras_model = tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
      outputs=output_loss)
  return keras_model, transformer_encoder