def run_movie(flags_obj): """Construct all necessary functions and call run_loop. Args: flags_obj: Object containing user specified flags. """ if flags_obj.download_if_missing: movielens.download(dataset=flags_obj.dataset, data_dir=flags_obj.data_dir) train_input_fn, eval_input_fn, model_column_fn = \ movielens_dataset.construct_input_fns( dataset=flags_obj.dataset, data_dir=flags_obj.data_dir, batch_size=flags_obj.batch_size, repeat=flags_obj.epochs_between_evals) tensors_to_log = {'loss': '{loss_prefix}head/weighted_loss/value'} wide_deep_run_loop.run_loop(name="MovieLens", train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, model_column_fn=model_column_fn, build_estimator_fn=build_estimator, flags_obj=flags_obj, tensors_to_log=tensors_to_log, early_stop=False)
def run_census(flags_obj): """Construct all necessary functions and call run_loop. Args: flags_obj: Object containing user specified flags. """ if flags_obj.download_if_missing: census_dataset.download(flags_obj.data_dir) train_file = os.path.join(flags_obj.data_dir, census_dataset.TRAINING_FILE) test_file = os.path.join(flags_obj.data_dir, census_dataset.EVAL_FILE) # Train and evaluate the model every `flags.epochs_between_evals` epochs. def train_input_fn(): return census_dataset.input_fn(train_file, flags_obj.epochs_between_evals, True, flags_obj.batch_size) def eval_input_fn(): return census_dataset.input_fn(test_file, 1, False, flags_obj.batch_size) tensors_to_log = { 'average_loss': '{loss_prefix}head/truediv', 'loss': '{loss_prefix}head/weighted_loss/Sum' } wide_deep_run_loop.run_loop( name="Census Income", train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, model_column_fn=census_dataset.build_model_columns, build_estimator_fn=build_estimator, flags_obj=flags_obj, tensors_to_log=tensors_to_log, early_stop=True)