def test_end_to_end(self): ncf_dataset = data_preprocessing.instantiate_pipeline( dataset=DATASET, data_dir=self.temp_data_dir, batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE, num_data_readers=2, num_neg=NUM_NEG) for _ in range(30): if tf.gfile.Exists(ncf_dataset.cache_paths.subproc_alive): break time.sleep(1) # allow `alive` file to be written g = tf.Graph() with g.as_default(): input_fn, record_dir, batch_count = \ data_preprocessing.make_train_input_fn(ncf_dataset) dataset = input_fn({"batch_size": BATCH_SIZE, "use_tpu": False}) first_epoch = self.drain_dataset(dataset=dataset, g=g) user_inv_map = {v: k for k, v in ncf_dataset.user_map.items()} item_inv_map = {v: k for k, v in ncf_dataset.item_map.items()} train_examples = { True: set(), False: set(), } for features, labels in first_epoch: for u, i, l in zip(features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN], labels): u_raw = user_inv_map[u] i_raw = item_inv_map[i] if ((u_raw, i_raw) in self.seen_pairs) != l: # The evaluation item is not considered during false negative # generation, so it will occasionally appear as a negative example # during training. assert not l assert i_raw == self.holdout[u_raw][1] train_examples[l].add((u_raw, i_raw)) num_positives_seen = len(train_examples[True]) # The numbers don't match exactly because the last batch spills over into # the next epoch assert ncf_dataset.num_train_positives - num_positives_seen < BATCH_SIZE # This check is more heuristic because negatives are sampled with # replacement. It only checks that negative generation is reasonably random. assert len(train_examples[False]) / NUM_NEG / num_positives_seen > 0.9
def run_ncf(_): """Run NCF training and eval loop.""" if FLAGS.download_if_missing: movielens.download(FLAGS.dataset, FLAGS.data_dir) num_gpus = flags_core.get_num_gpus(FLAGS) batch_size = distribution_utils.per_device_batch_size( int(FLAGS.batch_size), num_gpus) eval_batch_size = int(FLAGS.eval_batch_size or FLAGS.batch_size) ncf_dataset = data_preprocessing.instantiate_pipeline( dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, batch_size=batch_size, eval_batch_size=eval_batch_size, num_neg=FLAGS.num_neg, epochs_per_cycle=FLAGS.epochs_between_evals, match_mlperf=FLAGS.ml_perf) model_helpers.apply_clean(flags.FLAGS) train_estimator, eval_estimator = construct_estimator( num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={ "batch_size": batch_size, "learning_rate": FLAGS.learning_rate, "num_users": ncf_dataset.num_users, "num_items": ncf_dataset.num_items, "mf_dim": FLAGS.num_factors, "model_layers": [int(layer) for layer in FLAGS.layers], "mf_regularization": FLAGS.mf_regularization, "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization], "use_tpu": FLAGS.tpu is not None, "tpu": FLAGS.tpu, "tpu_zone": FLAGS.tpu_zone, "tpu_gcp_project": FLAGS.tpu_gcp_project, }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size) # Create hooks that log information about the training and metric values train_hooks = hooks_helper.get_train_hooks( FLAGS.hooks, model_dir=FLAGS.model_dir, batch_size=FLAGS.batch_size # for ExamplesPerSecondHook ) run_params = { "batch_size": FLAGS.batch_size, "eval_batch_size": eval_batch_size, "number_factors": FLAGS.num_factors, "hr_threshold": FLAGS.hr_threshold, "train_epochs": FLAGS.train_epochs, } benchmark_logger = logger.get_benchmark_logger() benchmark_logger.log_run_info(model_name="recommendation", dataset_name=FLAGS.dataset, run_params=run_params, test_id=FLAGS.benchmark_test_id) approx_train_steps = int(ncf_dataset.num_train_positives * (1 + FLAGS.num_neg) // FLAGS.batch_size) pred_input_fn = data_preprocessing.make_pred_input_fn( ncf_dataset=ncf_dataset) total_training_cycle = 1 if FLAGS.inference_only else FLAGS.train_epochs // FLAGS.epochs_between_evals for cycle_index in range(total_training_cycle): tf.logging.info("Starting a training cycle: {}/{}".format( cycle_index + 1, total_training_cycle)) if not FLAGS.inference_only: # Train the model train_input_fn, train_record_dir, batch_count = \ data_preprocessing.make_train_input_fn(ncf_dataset=ncf_dataset) if np.abs(approx_train_steps - batch_count) > 1: tf.logging.warning( "Estimated ({}) and reported ({}) number of batches differ by more " "than one".format(approx_train_steps, batch_count)) train_estimator.train(input_fn=train_input_fn, hooks=train_hooks, steps=batch_count) tf.gfile.DeleteRecursively(train_record_dir) # Evaluate the model eval_results = evaluate_model(eval_estimator, ncf_dataset, pred_input_fn) # Benchmark the evaluation results benchmark_logger.log_evaluation_result(eval_results) # Log the HR and NDCG results. hr = eval_results[_HR_KEY] ndcg = eval_results[_NDCG_KEY] tf.logging.fatal("Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format( cycle_index + 1, hr, ndcg)) # Export SavedModel if FLAGS.export_savedmodel: eval_estimator.export_savedmodel(FLAGS.model_dir, serving_input_receiver_fn) print("SavedModel successfully exported to: {}/<timestamp>".format( FLAGS.model_dir)) # Some of the NumPy vector math can be quite large and likes to stay in # memory for a while. gc.collect() # If some evaluation threshold is met if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr): break # Clear the session explicitly to avoid session delete error tf.keras.backend.clear_session()
def run_ncf(_): """Run NCF training and eval loop.""" if FLAGS.download_if_missing: movielens.download(FLAGS.dataset, FLAGS.data_dir) num_gpus = flags_core.get_num_gpus(FLAGS) batch_size = distribution_utils.per_device_batch_size( int(FLAGS.batch_size), num_gpus) eval_batch_size = int(FLAGS.eval_batch_size or FLAGS.batch_size) ncf_dataset = data_preprocessing.instantiate_pipeline( dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, batch_size=batch_size, eval_batch_size=eval_batch_size, num_neg=FLAGS.num_neg, epochs_per_cycle=FLAGS.epochs_between_evals, match_mlperf=FLAGS.ml_perf) model_helpers.apply_clean(flags.FLAGS) train_estimator, eval_estimator = construct_estimator( num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={ "batch_size": batch_size, "learning_rate": FLAGS.learning_rate, "num_users": ncf_dataset.num_users, "num_items": ncf_dataset.num_items, "mf_dim": FLAGS.num_factors, "model_layers": [int(layer) for layer in FLAGS.layers], "mf_regularization": FLAGS.mf_regularization, "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization], "use_tpu": FLAGS.tpu is not None, "tpu": FLAGS.tpu, "tpu_zone": FLAGS.tpu_zone, "tpu_gcp_project": FLAGS.tpu_gcp_project, }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size) # Create hooks that log information about the training and metric values train_hooks = hooks_helper.get_train_hooks( FLAGS.hooks, model_dir=FLAGS.model_dir, batch_size=FLAGS.batch_size # for ExamplesPerSecondHook ) run_params = { "batch_size": FLAGS.batch_size, "eval_batch_size": eval_batch_size, "number_factors": FLAGS.num_factors, "hr_threshold": FLAGS.hr_threshold, "train_epochs": FLAGS.train_epochs, } benchmark_logger = logger.get_benchmark_logger() benchmark_logger.log_run_info( model_name="recommendation", dataset_name=FLAGS.dataset, run_params=run_params, test_id=FLAGS.benchmark_test_id) approx_train_steps = int(ncf_dataset.num_train_positives * (1 + FLAGS.num_neg) // FLAGS.batch_size) pred_input_fn = data_preprocessing.make_pred_input_fn(ncf_dataset=ncf_dataset) total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals for cycle_index in range(total_training_cycle): tf.logging.info("Starting a training cycle: {}/{}".format( cycle_index + 1, total_training_cycle)) # Train the model train_input_fn, train_record_dir, batch_count = \ data_preprocessing.make_train_input_fn(ncf_dataset=ncf_dataset) if np.abs(approx_train_steps - batch_count) > 1: tf.logging.warning( "Estimated ({}) and reported ({}) number of batches differ by more " "than one".format(approx_train_steps, batch_count)) train_estimator.train(input_fn=train_input_fn, hooks=train_hooks, steps=batch_count) tf.gfile.DeleteRecursively(train_record_dir) # Evaluate the model eval_results = evaluate_model( eval_estimator, ncf_dataset, pred_input_fn) # Benchmark the evaluation results benchmark_logger.log_evaluation_result(eval_results) # Log the HR and NDCG results. hr = eval_results[_HR_KEY] ndcg = eval_results[_NDCG_KEY] tf.logging.info( "Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format( cycle_index + 1, hr, ndcg)) # Some of the NumPy vector math can be quite large and likes to stay in # memory for a while. gc.collect() # If some evaluation threshold is met if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr): break # Clear the session explicitly to avoid session delete error tf.keras.backend.clear_session()
def run_ncf(_): """Run NCF training and eval loop.""" if FLAGS.download_if_missing: movielens.download(FLAGS.dataset, FLAGS.data_dir) if FLAGS.seed is not None: np.random.seed(FLAGS.seed) num_gpus = flags_core.get_num_gpus(FLAGS) batch_size = distribution_utils.per_device_batch_size( int(FLAGS.batch_size), num_gpus) eval_per_user = rconst.NUM_EVAL_NEGATIVES + 1 eval_batch_size = int(FLAGS.eval_batch_size or max([FLAGS.batch_size, eval_per_user])) if eval_batch_size % eval_per_user: eval_batch_size = eval_batch_size // eval_per_user * eval_per_user tf.logging.warning( "eval examples per user does not evenly divide eval_batch_size. " "Overriding to {}".format(eval_batch_size)) ncf_dataset, cleanup_fn = data_preprocessing.instantiate_pipeline( dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, batch_size=batch_size, eval_batch_size=eval_batch_size, num_neg=FLAGS.num_neg, epochs_per_cycle=FLAGS.epochs_between_evals, match_mlperf=FLAGS.ml_perf, deterministic=FLAGS.seed is not None) model_helpers.apply_clean(flags.FLAGS) train_estimator, eval_estimator = construct_estimator( num_gpus=num_gpus, model_dir=FLAGS.model_dir, params={ "use_seed": FLAGS.seed is not None, "hash_pipeline": FLAGS.hash_pipeline, "batch_size": batch_size, "learning_rate": FLAGS.learning_rate, "num_users": ncf_dataset.num_users, "num_items": ncf_dataset.num_items, "mf_dim": FLAGS.num_factors, "model_layers": [int(layer) for layer in FLAGS.layers], "mf_regularization": FLAGS.mf_regularization, "mlp_reg_layers": [float(reg) for reg in FLAGS.mlp_regularization], "num_neg": FLAGS.num_neg, "use_tpu": FLAGS.tpu is not None, "tpu": FLAGS.tpu, "tpu_zone": FLAGS.tpu_zone, "tpu_gcp_project": FLAGS.tpu_gcp_project, "beta1": FLAGS.beta1, "beta2": FLAGS.beta2, "epsilon": FLAGS.epsilon, "match_mlperf": FLAGS.ml_perf, }, batch_size=flags.FLAGS.batch_size, eval_batch_size=eval_batch_size) # Create hooks that log information about the training and metric values train_hooks = hooks_helper.get_train_hooks( FLAGS.hooks, model_dir=FLAGS.model_dir, batch_size=FLAGS.batch_size, # for ExamplesPerSecondHook tensors_to_log={"cross_entropy": "cross_entropy"}) run_params = { "batch_size": FLAGS.batch_size, "eval_batch_size": eval_batch_size, "number_factors": FLAGS.num_factors, "hr_threshold": FLAGS.hr_threshold, "train_epochs": FLAGS.train_epochs, } benchmark_logger = logger.get_benchmark_logger() benchmark_logger.log_run_info(model_name="recommendation", dataset_name=FLAGS.dataset, run_params=run_params, test_id=FLAGS.benchmark_test_id) approx_train_steps = int(ncf_dataset.num_train_positives * (1 + FLAGS.num_neg) // FLAGS.batch_size) pred_input_fn = data_preprocessing.make_pred_input_fn( ncf_dataset=ncf_dataset) total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals for cycle_index in range(total_training_cycle): tf.logging.info("Starting a training cycle: {}/{}".format( cycle_index + 1, total_training_cycle)) # Train the model train_input_fn, train_record_dir, batch_count = \ data_preprocessing.make_train_input_fn(ncf_dataset=ncf_dataset) if np.abs(approx_train_steps - batch_count) > 1: tf.logging.warning( "Estimated ({}) and reported ({}) number of batches differ by more " "than one".format(approx_train_steps, batch_count)) train_estimator.train(input_fn=train_input_fn, hooks=train_hooks, steps=batch_count) tf.gfile.DeleteRecursively(train_record_dir) tf.logging.info("Beginning evaluation.") eval_results = eval_estimator.evaluate(pred_input_fn) tf.logging.info("Evaluation complete.") # Benchmark the evaluation results benchmark_logger.log_evaluation_result(eval_results) # Log the HR and NDCG results. hr = eval_results[rconst.HR_KEY] ndcg = eval_results[rconst.NDCG_KEY] tf.logging.info("Iteration {}: HR = {:.4f}, NDCG = {:.4f}".format( cycle_index + 1, hr, ndcg)) # If some evaluation threshold is met if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr): break cleanup_fn() # Cleanup data construction artifacts and subprocess. # Clear the session explicitly to avoid session delete error tf.keras.backend.clear_session()