コード例 #1
0
def run_ncf(_):
    """Run NCF training and eval with Keras."""
    # TODO(seemuch): Support different train and eval batch sizes
    if FLAGS.eval_batch_size != FLAGS.batch_size:
        tf.logging.warning(
            "The Keras implementation of NCF currently does not support batch_size "
            "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
            "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size))
        FLAGS.eval_batch_size = FLAGS.batch_size

    params = ncf_common.parse_flags(FLAGS)
    batch_size = params["batch_size"]

    # ncf_common rounds eval_batch_size (this is needed due to a reshape during
    # eval). This carries over that rounding to batch_size as well.
    params['batch_size'] = params['eval_batch_size']

    num_users, num_items, num_train_steps, num_eval_steps, producer = (
        ncf_common.get_inputs(params))

    params["num_users"], params["num_items"] = num_users, num_items
    producer.start()
    model_helpers.apply_clean(flags.FLAGS)

    batches_per_step = params["batches_per_step"]
    train_input_dataset, eval_input_dataset = _get_train_and_eval_data(
        producer, params)
    # It is required that for distributed training, the dataset must call
    # batch(). The parameter of batch() here is the number of replicas involed,
    # such that each replica evenly gets a slice of data.
    train_input_dataset = train_input_dataset.batch(batches_per_step)
    eval_input_dataset = eval_input_dataset.batch(batches_per_step)

    strategy = ncf_common.get_distribution_strategy(params)
    with distribution_utils.get_strategy_scope(strategy):
        keras_model = _get_keras_model(params)
        optimizer = ncf_common.get_optimizer(params)
        time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)

        keras_model.compile(loss=_keras_loss,
                            metrics=[_get_metric_fn(params)],
                            optimizer=optimizer)

        history = keras_model.fit(
            train_input_dataset,
            epochs=FLAGS.train_epochs,
            callbacks=[IncrementEpochCallback(producer), time_callback],
            verbose=2)

        tf.logging.info("Training done. Start evaluating")

        eval_results = keras_model.evaluate(eval_input_dataset,
                                            steps=num_eval_steps,
                                            verbose=2)

    tf.logging.info("Keras evaluation is done.")

    stats = build_stats(history, eval_results, time_callback)
    return stats
コード例 #2
0
def run_ncf(_):
    """Run NCF training and eval with Keras."""
    # TODO(seemuch): Support different train and eval batch sizes
    if FLAGS.eval_batch_size != FLAGS.batch_size:
        tf.logging.warning(
            "The Keras implementation of NCF currently does not support batch_size "
            "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
            "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size))
        FLAGS.eval_batch_size = FLAGS.batch_size

    params = ncf_common.parse_flags(FLAGS)

    # ncf_common rounds eval_batch_size (this is needed due to a reshape during
    # eval). This carries over that rounding to batch_size as well.
    params['batch_size'] = params['eval_batch_size']

    num_users, num_items, num_train_steps, num_eval_steps, producer = (
        ncf_common.get_inputs(params))

    params["num_users"], params["num_items"] = num_users, num_items
    producer.start()
    model_helpers.apply_clean(flags.FLAGS)

    keras_model = _get_keras_model(params)
    optimizer = ncf_common.get_optimizer(params)

    keras_model.compile(loss=_keras_loss,
                        metrics=[_get_metric_fn(params)],
                        optimizer=optimizer)

    train_input_dataset, eval_input_dataset = _get_train_and_eval_data(
        producer, params)

    keras_model.fit(train_input_dataset,
                    epochs=FLAGS.train_epochs,
                    callbacks=[IncrementEpochCallback(producer)],
                    verbose=2)

    tf.logging.info("Training done. Start evaluating")

    eval_results = keras_model.evaluate(eval_input_dataset,
                                        steps=num_eval_steps,
                                        verbose=2)

    tf.logging.info("Keras evaluation is done.")

    return eval_results
コード例 #3
0
def run_ncf(_):
  """Run NCF training and eval with Keras."""
  params = ncf_common.parse_flags(FLAGS)

  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  keras_model = _get_keras_model(params)
  optimizer = ncf_common.get_optimizer(params)

  keras_model.compile(
      loss=_keras_loss,
      metrics=[_get_metric_fn(params)],
      optimizer=optimizer)

  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(
      producer, params)

  keras_model.fit(
      train_input_dataset,
      epochs=FLAGS.train_epochs,
      callbacks=[IncrementEpochCallback(producer)],
      verbose=2)

  tf.logging.info("Training done. Start evaluating")

  eval_results = keras_model.evaluate(
      eval_input_dataset,
      steps=num_eval_steps,
      verbose=2)

  tf.logging.info("Keras evaluation is done.")

  return eval_results
コード例 #4
0
def run_ncf(_):
  """Run NCF training and eval with Keras."""
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
    logging.warning(
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

  params = ncf_common.parse_flags(FLAGS)

  if params["keras_use_ctl"] and int(tf.__version__.split(".")[0]) == 1:
    logging.error(
        "Custom training loop only works with tensorflow 2.0 and above.")
    return

  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
  # eval). This carries over that rounding to batch_size as well. This is the
  # per device batch size
  params["batch_size"] = params["eval_batch_size"]
  batch_size = params["batch_size"]

  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  batches_per_step = params["batches_per_step"]
  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(producer,
                                                                     params)
  # It is required that for distributed training, the dataset must call
  # batch(). The parameter of batch() here is the number of replicas involed,
  # such that each replica evenly gets a slice of data.
  train_input_dataset = train_input_dataset.batch(batches_per_step)
  eval_input_dataset = eval_input_dataset.batch(batches_per_step)

  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  per_epoch_callback = IncrementEpochCallback(producer)
  callbacks = [per_epoch_callback, time_callback]

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
        "val_metric_fn", desired_value=FLAGS.hr_threshold)
    callbacks.append(early_stopping_callback)

  strategy = ncf_common.get_distribution_strategy(params)
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])

  if params["keras_use_ctl"]:
    loss_object = tf.losses.SparseCategoricalCrossentropy(
        reduction=tf.keras.losses.Reduction.SUM,
        from_logits=True)
    train_input_iterator = strategy.make_dataset_iterator(train_input_dataset)
    eval_input_iterator = strategy.make_dataset_iterator(eval_input_dataset)

    @tf.function
    def train_step():
      """Called once per step to train the model."""
      def step_fn(inputs):
        """Computes loss and applied gradient per replica."""
        features, labels = inputs
        with tf.GradientTape() as tape:
          softmax_logits = keras_model(features)
          loss = loss_object(labels, softmax_logits,
                             sample_weight=features[rconst.VALID_POINT_MASK])
          loss *= (1.0 / (batch_size*strategy.num_replicas_in_sync))

        grads = tape.gradient(loss, keras_model.trainable_variables)
        optimizer.apply_gradients(list(zip(grads,
                                           keras_model.trainable_variables)))
        return loss

      per_replica_losses = strategy.experimental_run(step_fn,
                                                     train_input_iterator)
      mean_loss = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
      return mean_loss

    @tf.function
    def eval_step():
      """Called once per eval step to compute eval metrics."""
      def step_fn(inputs):
        """Computes eval metrics per replica."""
        features, _ = inputs
        softmax_logits = keras_model(features)
        in_top_k, metric_weights = metric_fn(
            softmax_logits, features[rconst.DUPLICATE_MASK], params)
        hr_sum = tf.reduce_sum(in_top_k*metric_weights)
        hr_count = tf.reduce_sum(metric_weights)
        return hr_sum, hr_count

      per_replica_hr_sum, per_replica_hr_count = (
          strategy.experimental_run(step_fn, eval_input_iterator))
      hr_sum = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
      hr_count = strategy.reduce(
          tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
      return hr_sum, hr_count

    time_callback.on_train_begin()
    for epoch in range(FLAGS.train_epochs):
      per_epoch_callback.on_epoch_begin(epoch)
      train_input_iterator.initialize()
      train_loss = 0
      for step in range(num_train_steps):
        time_callback.on_batch_begin(step+epoch*num_train_steps)
        train_loss += train_step()
        time_callback.on_batch_end(step+epoch*num_train_steps)
      train_loss /= num_train_steps
      logging.info("Done training epoch %s, epoch loss=%s.",
                   epoch+1, train_loss)
      eval_input_iterator.initialize()
      hr_sum = 0
      hr_count = 0
      for _ in range(num_eval_steps):
        step_hr_sum, step_hr_count = eval_step()
        hr_sum += step_hr_sum
        hr_count += step_hr_count
      logging.info("Done eval epoch %s, hr=%s.", epoch+1, hr_sum/hr_count)

      if (FLAGS.early_stopping and
          float(hr_sum/hr_count) > params["hr_threshold"]):
        break

    time_callback.on_train_end()
    eval_results = [None, hr_sum/hr_count]

  else:
    with distribution_utils.get_strategy_scope(strategy):

      keras_model.compile(optimizer=optimizer)

      history = keras_model.fit(train_input_dataset,
                                steps_per_epoch=num_train_steps,
                                epochs=FLAGS.train_epochs,
                                callbacks=callbacks,
                                validation_data=eval_input_dataset,
                                validation_steps=num_eval_steps,
                                verbose=2)

      logging.info("Training done. Start evaluating")

      eval_results = keras_model.evaluate(
          eval_input_dataset,
          steps=num_eval_steps,
          verbose=2)

      logging.info("Keras evaluation is done.")

    if history and history.history:
      train_history = history.history
      train_loss = train_history["loss"][-1]

  stats = build_stats(train_loss, eval_results, time_callback)
  return stats
コード例 #5
0
def run_ncf(_):
    """Run NCF training and eval with Keras."""

    keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

    if FLAGS.seed is not None:
        print("Setting tf seed")
        tf.random.set_seed(FLAGS.seed)

    params = ncf_common.parse_flags(FLAGS)
    model_helpers.apply_clean(flags.FLAGS)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=FLAGS.distribution_strategy,
        num_gpus=FLAGS.num_gpus,
        tpu_address=FLAGS.tpu)
    params["distribute_strategy"] = strategy

    if not keras_utils.is_v2_0() and strategy is not None:
        logging.error(
            "NCF Keras only works with distribution strategy in TF 2.0")
        return
    if (params["keras_use_ctl"]
            and (not keras_utils.is_v2_0() or strategy is None)):
        logging.error(
            "Custom training loop only works with tensorflow 2.0 and dist strat."
        )
        return
    if params["use_tpu"] and not params["keras_use_ctl"]:
        logging.error(
            "Custom training loop must be used when using TPUStrategy.")
        return

    batch_size = params["batch_size"]
    time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
    callbacks = [time_callback]

    producer, input_meta_data = None, None
    generate_input_online = params["train_dataset_path"] is None

    if generate_input_online:
        # Start data producing thread.
        num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
        producer.start()
        per_epoch_callback = IncrementEpochCallback(producer)
        callbacks.append(per_epoch_callback)
    else:
        assert params["eval_dataset_path"] and params["input_meta_data_path"]
        with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
            input_meta_data = json.loads(reader.read().decode("utf-8"))
            num_users = input_meta_data["num_users"]
            num_items = input_meta_data["num_items"]

    params["num_users"], params["num_items"] = num_users, num_items

    if FLAGS.early_stopping:
        early_stopping_callback = CustomEarlyStopping(
            "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
        callbacks.append(early_stopping_callback)

    use_remote_tpu = params["use_tpu"] and FLAGS.tpu
    primary_cpu_task = tpu_lib.get_primary_cpu_task(use_remote_tpu)

    with tf.device(primary_cpu_task):
        (train_input_dataset, eval_input_dataset,
         num_train_steps, num_eval_steps) = \
          (ncf_input_pipeline.create_ncf_input_data(
              params, producer, input_meta_data, strategy))
        steps_per_epoch = None if generate_input_online else num_train_steps

        with distribution_utils.get_strategy_scope(strategy):
            keras_model = _get_keras_model(params)
            optimizer = tf.keras.optimizers.Adam(
                learning_rate=params["learning_rate"],
                beta_1=params["beta1"],
                beta_2=params["beta2"],
                epsilon=params["epsilon"])
            if FLAGS.dtype == "fp16":
                optimizer = \
                  tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
                      optimizer,
                      loss_scale=flags_core.get_loss_scale(FLAGS,
                                                           default_for_fp16="dynamic"))

            if params["keras_use_ctl"]:
                train_loss, eval_results = run_ncf_custom_training(
                    params,
                    strategy,
                    keras_model,
                    optimizer,
                    callbacks,
                    train_input_dataset,
                    eval_input_dataset,
                    num_train_steps,
                    num_eval_steps,
                    generate_input_online=generate_input_online)
            else:
                # TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
                # a valid arg for this model. Also remove as a valid flag.
                if FLAGS.force_v2_in_keras_compile is not None:
                    keras_model.compile(optimizer=optimizer,
                                        run_eagerly=FLAGS.run_eagerly,
                                        experimental_run_tf_function=FLAGS.
                                        force_v2_in_keras_compile)
                else:
                    keras_model.compile(optimizer=optimizer,
                                        run_eagerly=FLAGS.run_eagerly)

                history = keras_model.fit(train_input_dataset,
                                          epochs=FLAGS.train_epochs,
                                          steps_per_epoch=steps_per_epoch,
                                          callbacks=callbacks,
                                          validation_data=eval_input_dataset,
                                          validation_steps=num_eval_steps,
                                          verbose=2)

                logging.info("Training done. Start evaluating")

                eval_loss_and_metrics = keras_model.evaluate(
                    eval_input_dataset, steps=num_eval_steps, verbose=2)

                logging.info("Keras evaluation is done.")

                # Keras evaluate() API returns scalar loss and metric values from
                # evaluation as a list. Here, the returned list would contain
                # [evaluation loss, hr sum, hr count].
                eval_hit_rate = eval_loss_and_metrics[
                    1] / eval_loss_and_metrics[2]

                # Format evaluation result into [eval loss, eval hit accuracy].
                eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

                if history and history.history:
                    train_history = history.history
                    train_loss = train_history["loss"][-1]

        stats = build_stats(train_loss, eval_results, time_callback)
        return stats
コード例 #6
0
def run_ncf(_):
    """Run NCF training and eval with Keras."""

    keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

    if FLAGS.seed is not None:
        print("Setting tf seed")
        tf.random.set_seed(FLAGS.seed)

    model_helpers.apply_clean(FLAGS)

    if FLAGS.dtype == "fp16" and FLAGS.fp16_implementation == "keras":
        tf.keras.mixed_precision.set_global_policy("mixed_float16")

    strategy = distribute_utils.get_distribution_strategy(
        distribution_strategy=FLAGS.distribution_strategy,
        num_gpus=FLAGS.num_gpus,
        tpu_address=FLAGS.tpu)

    params = ncf_common.parse_flags(FLAGS)
    params["distribute_strategy"] = strategy
    params["use_tpu"] = (FLAGS.distribution_strategy == "tpu")

    if params["use_tpu"] and not params["keras_use_ctl"]:
        logging.error(
            "Custom training loop must be used when using TPUStrategy.")
        return

    batch_size = params["batch_size"]
    time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
    callbacks = [time_callback]

    producer, input_meta_data = None, None
    generate_input_online = params["train_dataset_path"] is None

    if generate_input_online:
        # Start data producing thread.
        num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
        producer.start()
        per_epoch_callback = IncrementEpochCallback(producer)
        callbacks.append(per_epoch_callback)
    else:
        assert params["eval_dataset_path"] and params["input_meta_data_path"]
        with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
            input_meta_data = json.loads(reader.read().decode("utf-8"))
            num_users = input_meta_data["num_users"]
            num_items = input_meta_data["num_items"]

    params["num_users"], params["num_items"] = num_users, num_items

    if FLAGS.early_stopping:
        early_stopping_callback = CustomEarlyStopping(
            "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
        callbacks.append(early_stopping_callback)

    (train_input_dataset, eval_input_dataset,
     num_train_steps, num_eval_steps) = \
      (ncf_input_pipeline.create_ncf_input_data(
          params, producer, input_meta_data, strategy))
    steps_per_epoch = None if generate_input_online else num_train_steps

    with distribute_utils.get_strategy_scope(strategy):
        keras_model = _get_keras_model(params)
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=params["learning_rate"],
            beta_1=params["beta1"],
            beta_2=params["beta2"],
            epsilon=params["epsilon"])
        if FLAGS.fp16_implementation == "graph_rewrite":
            optimizer = \
              tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
                  optimizer,
                  loss_scale=flags_core.get_loss_scale(FLAGS,
                                                       default_for_fp16="dynamic"))
        elif FLAGS.dtype == "fp16":
            loss_scale = flags_core.get_loss_scale(FLAGS,
                                                   default_for_fp16="dynamic")
            # Note Model.compile automatically wraps the optimizer with a
            # LossScaleOptimizer using dynamic loss scaling. We explicitly wrap it
            # here for the case where a custom training loop or fixed loss scale is
            # used.
            if loss_scale == "dynamic":
                optimizer = tf.keras.mixed_precision.LossScaleOptimizer(
                    optimizer)
            else:
                optimizer = tf.keras.mixed_precision.LossScaleOptimizer(
                    optimizer, dynamic=False, initial_scale=loss_scale)

        if params["keras_use_ctl"]:
            train_loss, eval_results = run_ncf_custom_training(
                params,
                strategy,
                keras_model,
                optimizer,
                callbacks,
                train_input_dataset,
                eval_input_dataset,
                num_train_steps,
                num_eval_steps,
                generate_input_online=generate_input_online)
        else:
            keras_model.compile(optimizer=optimizer,
                                run_eagerly=FLAGS.run_eagerly)

            if not FLAGS.ml_perf:
                # Create Tensorboard summary and checkpoint callbacks.
                summary_dir = os.path.join(FLAGS.model_dir, "summaries")
                summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
                checkpoint_path = os.path.join(FLAGS.model_dir, "checkpoint")
                checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
                    checkpoint_path, save_weights_only=True)

                callbacks += [summary_callback, checkpoint_callback]

            history = keras_model.fit(train_input_dataset,
                                      epochs=FLAGS.train_epochs,
                                      steps_per_epoch=steps_per_epoch,
                                      callbacks=callbacks,
                                      validation_data=eval_input_dataset,
                                      validation_steps=num_eval_steps,
                                      verbose=2)

            logging.info("Training done. Start evaluating")

            eval_loss_and_metrics = keras_model.evaluate(eval_input_dataset,
                                                         steps=num_eval_steps,
                                                         verbose=2)

            logging.info("Keras evaluation is done.")

            # Keras evaluate() API returns scalar loss and metric values from
            # evaluation as a list. Here, the returned list would contain
            # [evaluation loss, hr sum, hr count].
            eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]

            # Format evaluation result into [eval loss, eval hit accuracy].
            eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

            if history and history.history:
                train_history = history.history
                train_loss = train_history["loss"][-1]

    stats = build_stats(train_loss, eval_results, time_callback)
    return stats
コード例 #7
0
ファイル: ncf_keras_main.py プロジェクト: znznznznzn/models
def run_ncf(_):
    """Run NCF training and eval with Keras."""

    keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

    if FLAGS.seed is not None:
        print("Setting tf seed")
        tf.random.set_seed(FLAGS.seed)

    # TODO(seemuch): Support different train and eval batch sizes
    if FLAGS.eval_batch_size != FLAGS.batch_size:
        logging.warning(
            "The Keras implementation of NCF currently does not support batch_size "
            "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
            "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size))
        FLAGS.eval_batch_size = FLAGS.batch_size

    params = ncf_common.parse_flags(FLAGS)
    model_helpers.apply_clean(flags.FLAGS)

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=FLAGS.distribution_strategy,
        num_gpus=FLAGS.num_gpus)
    params["distribute_strategy"] = strategy

    if not keras_utils.is_v2_0() and strategy is not None:
        logging.error(
            "NCF Keras only works with distribution strategy in TF 2.0")
        return

    if (params["keras_use_ctl"]
            and (not keras_utils.is_v2_0() or strategy is None)):
        logging.error(
            "Custom training loop only works with tensorflow 2.0 and dist strat."
        )
        return

    # ncf_common rounds eval_batch_size (this is needed due to a reshape during
    # eval). This carries over that rounding to batch_size as well. This is the
    # per device batch size
    params["batch_size"] = params["eval_batch_size"]
    batch_size = params["batch_size"]

    time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
    callbacks = [time_callback]

    producer, input_meta_data = None, None
    generate_input_online = params["train_dataset_path"] is None

    if generate_input_online:
        # Start data producing thread.
        num_users, num_items, num_train_steps, num_eval_steps, producer = (
            ncf_common.get_inputs(params))
        producer.start()
        per_epoch_callback = IncrementEpochCallback(producer)
        callbacks.append(per_epoch_callback)
    else:
        assert params["eval_dataset_path"] and params["input_meta_data_path"]
        with tf.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
            input_meta_data = json.loads(reader.read().decode("utf-8"))
            num_users = input_meta_data["num_users"]
            num_items = input_meta_data["num_items"]

    params["num_users"], params["num_items"] = num_users, num_items
    (train_input_dataset, eval_input_dataset, num_train_steps, num_eval_steps) = \
        (ncf_input_pipeline.create_ncf_input_data(
            params, producer, input_meta_data))
    steps_per_epoch = None if generate_input_online else num_train_steps

    if FLAGS.early_stopping:
        early_stopping_callback = CustomEarlyStopping(
            "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
        callbacks.append(early_stopping_callback)
    with distribution_utils.get_strategy_scope(strategy):
        keras_model = _get_keras_model(params)
        optimizer = tf.keras.optimizers.Adam(
            learning_rate=params["learning_rate"],
            beta_1=params["beta1"],
            beta_2=params["beta2"],
            epsilon=params["epsilon"])

    if params["keras_use_ctl"]:
        loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
            reduction="sum", from_logits=True)
        train_input_iterator = strategy.make_dataset_iterator(
            train_input_dataset)
        eval_input_iterator = strategy.make_dataset_iterator(
            eval_input_dataset)

        @tf.function
        def train_step():
            """Called once per step to train the model."""
            def step_fn(features):
                """Computes loss and applied gradient per replica."""
                with tf.GradientTape() as tape:
                    softmax_logits = keras_model(features)
                    labels = features[rconst.TRAIN_LABEL_KEY]
                    loss = loss_object(
                        labels,
                        softmax_logits,
                        sample_weight=features[rconst.VALID_POINT_MASK])
                    loss *= (1.0 /
                             (batch_size * strategy.num_replicas_in_sync))

                grads = tape.gradient(loss, keras_model.trainable_variables)
                # Converting gradients to dense form helps in perf on GPU for NCF
                grads = neumf_model.sparse_to_dense_grads(
                    list(zip(grads, keras_model.trainable_variables)))
                optimizer.apply_gradients(grads)
                return loss

            per_replica_losses = strategy.experimental_run(
                step_fn, train_input_iterator)
            mean_loss = strategy.reduce(tf.distribute.ReduceOp.SUM,
                                        per_replica_losses,
                                        axis=None)
            return mean_loss

        @tf.function
        def eval_step():
            """Called once per eval step to compute eval metrics."""
            def step_fn(features):
                """Computes eval metrics per replica."""
                softmax_logits = keras_model(features)
                in_top_k, metric_weights = metric_fn(
                    softmax_logits, features[rconst.DUPLICATE_MASK], params)
                hr_sum = tf.reduce_sum(in_top_k * metric_weights)
                hr_count = tf.reduce_sum(metric_weights)
                return hr_sum, hr_count

            per_replica_hr_sum, per_replica_hr_count = (
                strategy.experimental_run(step_fn, eval_input_iterator))
            hr_sum = strategy.reduce(tf.distribute.ReduceOp.SUM,
                                     per_replica_hr_sum,
                                     axis=None)
            hr_count = strategy.reduce(tf.distribute.ReduceOp.SUM,
                                       per_replica_hr_count,
                                       axis=None)
            return hr_sum, hr_count

        time_callback.on_train_begin()
        for epoch in range(FLAGS.train_epochs):
            for cb in callbacks:
                cb.on_epoch_begin(epoch)

            # As NCF dataset is sampled with randomness, not repeating
            # data elements in each epoch has significant impact on
            # convergence. As so, offline-generated TF record files
            # contains all epoch worth of data. Thus we do not need
            # to initialize dataset when reading from tf record files.
            if generate_input_online:
                train_input_iterator.initialize()

            train_loss = 0
            for step in range(num_train_steps):
                time_callback.on_batch_begin(step + epoch * num_train_steps)
                train_loss += train_step()
                time_callback.on_batch_end(step + epoch * num_train_steps)
            train_loss /= num_train_steps
            logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
                         train_loss)
            eval_input_iterator.initialize()
            hr_sum = 0
            hr_count = 0
            for _ in range(num_eval_steps):
                step_hr_sum, step_hr_count = eval_step()
                hr_sum += step_hr_sum
                hr_count += step_hr_count
            logging.info("Done eval epoch %s, hr=%s.", epoch + 1,
                         hr_sum / hr_count)

            if (FLAGS.early_stopping
                    and float(hr_sum / hr_count) > params["hr_threshold"]):
                break

        time_callback.on_train_end()
        eval_results = [None, hr_sum / hr_count]

    else:
        with distribution_utils.get_strategy_scope(strategy):

            keras_model.compile(
                optimizer=optimizer,
                run_eagerly=FLAGS.run_eagerly,
                run_distributed=FLAGS.force_v2_in_keras_compile)

            history = keras_model.fit(train_input_dataset,
                                      epochs=FLAGS.train_epochs,
                                      steps_per_epoch=steps_per_epoch,
                                      callbacks=callbacks,
                                      validation_data=eval_input_dataset,
                                      validation_steps=num_eval_steps,
                                      verbose=2)

            logging.info("Training done. Start evaluating")

            eval_results = keras_model.evaluate(eval_input_dataset,
                                                steps=num_eval_steps,
                                                verbose=2)

            logging.info("Keras evaluation is done.")

        if history and history.history:
            train_history = history.history
            train_loss = train_history["loss"][-1]

    stats = build_stats(train_loss, eval_results, time_callback)
    return stats
コード例 #8
0
def run_ncf(_):
    """Run NCF training and eval loop."""
    params = ncf_common.parse_flags(FLAGS)

    num_users, num_items, num_train_steps, num_eval_steps, producer = (
        ncf_common.get_inputs(params))

    params["num_users"], params["num_items"] = num_users, num_items
    producer.start()
    model_helpers.apply_clean(flags.FLAGS)

    estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)

    benchmark_logger, train_hooks = log_and_get_hooks(
        params["eval_batch_size"])
    total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals

    target_reached = False
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
    for cycle_index in range(total_training_cycle):
        assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
        logging.info("Starting a training cycle: {}/{}".format(
            cycle_index + 1, total_training_cycle))

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                                value=cycle_index)

        train_input_fn = producer.make_input_fn(is_training=True)
        estimator.train(input_fn=train_input_fn,
                        hooks=train_hooks,
                        steps=num_train_steps)

        logging.info("Beginning evaluation.")
        eval_input_fn = producer.make_input_fn(is_training=False)

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                                value=cycle_index)
        eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
        logging.info("Evaluation complete.")

        hr = float(eval_results[rconst.HR_KEY])
        ndcg = float(eval_results[rconst.NDCG_KEY])
        loss = float(eval_results["loss"])

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_TARGET,
                                value={
                                    "epoch": cycle_index,
                                    "value": FLAGS.hr_threshold
                                })
        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                                value={
                                    "epoch": cycle_index,
                                    "value": hr
                                })
        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
                                value={
                                    "epoch": cycle_index,
                                    "value": rconst.NUM_EVAL_NEGATIVES
                                })

        mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP,
                                value=cycle_index)

        # Benchmark the evaluation results
        benchmark_logger.log_evaluation_result(eval_results)
        # Log the HR and NDCG results.
        logging.info(
            "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
                cycle_index + 1, hr, ndcg, loss))

        # If some evaluation threshold is met
        if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
            target_reached = True
            break

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                            value={"success": target_reached})
    producer.stop_loop()
    producer.join()

    # Clear the session explicitly to avoid session delete error
    tf.keras.backend.clear_session()
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)
コード例 #9
0
ファイル: ncf_keras_main.py プロジェクト: zhangjiulong/models
def run_ncf(_):
  """Run NCF training and eval with Keras."""
  # TODO(seemuch): Support different train and eval batch sizes
  if FLAGS.eval_batch_size != FLAGS.batch_size:
    logging.warning(
        "The Keras implementation of NCF currently does not support batch_size "
        "!= eval_batch_size ({} vs. {}). Overriding eval_batch_size to match "
        "batch_size".format(FLAGS.eval_batch_size, FLAGS.batch_size)
        )
    FLAGS.eval_batch_size = FLAGS.batch_size

  params = ncf_common.parse_flags(FLAGS)
  batch_size = params["batch_size"]

  # ncf_common rounds eval_batch_size (this is needed due to a reshape during
  # eval). This carries over that rounding to batch_size as well.
  params['batch_size'] = params['eval_batch_size']

  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  batches_per_step = params["batches_per_step"]
  train_input_dataset, eval_input_dataset = _get_train_and_eval_data(producer,
                                                                     params)
  # It is required that for distributed training, the dataset must call
  # batch(). The parameter of batch() here is the number of replicas involed,
  # such that each replica evenly gets a slice of data.
  train_input_dataset = train_input_dataset.batch(batches_per_step)
  eval_input_dataset = eval_input_dataset.batch(batches_per_step)

  strategy = ncf_common.get_distribution_strategy(params)
  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
    time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)

    keras_model.compile(
        loss=_keras_loss,
        metrics=[_get_metric_fn(params)],
        optimizer=optimizer)

    history = keras_model.fit(train_input_dataset,
                              epochs=FLAGS.train_epochs,
                              callbacks=[
                                  IncrementEpochCallback(producer),
                                  time_callback],
                              verbose=2)

    logging.info("Training done. Start evaluating")

    eval_results = keras_model.evaluate(
        eval_input_dataset,
        steps=num_eval_steps,
        verbose=2)

  logging.info("Keras evaluation is done.")

  stats = build_stats(history, eval_results, time_callback)
  return stats
コード例 #10
0
>>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36

  if params["use_tpu"] and not params["keras_use_ctl"]:
    logging.error("Custom training loop must be used when using TPUStrategy.")
    return

  batch_size = params["batch_size"]
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
    num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]

  params["num_users"], params["num_items"] = num_users, num_items

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
コード例 #11
0
def run_ncf(_):
  """Run NCF training and eval loop."""
  params = ncf_common.parse_flags(FLAGS)

  num_users, num_items, num_train_steps, num_eval_steps, producer = (
      ncf_common.get_inputs(params))

  params["num_users"], params["num_items"] = num_users, num_items
  producer.start()
  model_helpers.apply_clean(flags.FLAGS)

  estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)

  benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"])
  total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals

  target_reached = False
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
  for cycle_index in range(total_training_cycle):
    assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
    tf.logging.info("Starting a training cycle: {}/{}".format(
        cycle_index + 1, total_training_cycle))

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
                            value=cycle_index)

    train_input_fn = producer.make_input_fn(is_training=True)
    estimator.train(input_fn=train_input_fn, hooks=train_hooks,
                    steps=num_train_steps)

    tf.logging.info("Beginning evaluation.")
    eval_input_fn = producer.make_input_fn(is_training=False)

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
                            value=cycle_index)
    eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
    tf.logging.info("Evaluation complete.")

    hr = float(eval_results[rconst.HR_KEY])
    ndcg = float(eval_results[rconst.NDCG_KEY])
    loss = float(eval_results["loss"])

    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_TARGET,
        value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
                            value={"epoch": cycle_index, "value": hr})
    mlperf_helper.ncf_print(
        key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
        value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)

    # Benchmark the evaluation results
    benchmark_logger.log_evaluation_result(eval_results)
    # Log the HR and NDCG results.
    tf.logging.info(
        "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
            cycle_index + 1, hr, ndcg, loss))

    # If some evaluation threshold is met
    if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
      target_reached = True
      break

  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
                          value={"success": target_reached})
  producer.stop_loop()
  producer.join()

  # Clear the session explicitly to avoid session delete error
  tf.keras.backend.clear_session()
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)