def build_inputs(self, params, input_context=None): """Builds classification input.""" ignore_label = self.task_config.losses.ignore_label decoder = segmentation_input.Decoder() parser = segmentation_input.Parser( output_size=params.output_size, train_on_crops=params.train_on_crops, ignore_label=ignore_label, resize_eval_groundtruth=params.resize_eval_groundtruth, groundtruth_padded_size=params.groundtruth_padded_size, aug_scale_min=params.aug_scale_min, aug_scale_max=params.aug_scale_max, aug_rand_hflip=params.aug_rand_hflip, dtype=params.dtype) reader = input_reader.InputReader( params, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type), decoder_fn=decoder.decode, parser_fn=parser.parse_fn(params.is_training)) dataset = reader.read(input_context=input_context) return dataset
def build_inputs(self, params, input_context=None): """Build input dataset.""" decoder_cfg = params.decoder.get() if params.decoder.type == 'simple_decoder': decoder = tf_example_decoder.TfExampleDecoder( regenerate_source_id=decoder_cfg.regenerate_source_id) elif params.decoder.type == 'label_map_decoder': decoder = tf_example_label_map_decoder.TfExampleDecoderLabelMap( label_map=decoder_cfg.label_map, regenerate_source_id=decoder_cfg.regenerate_source_id) else: raise ValueError('Unknown decoder type: {}!'.format( params.decoder.type)) decoder_cfg = params.decoder.get() if params.decoder.type == 'simple_decoder': decoder = tf_example_decoder.TfExampleDecoder( regenerate_source_id=decoder_cfg.regenerate_source_id) elif params.decoder.type == 'label_map_decoder': decoder = tf_example_decoder.TfExampleDecoderLabelMap( label_map=decoder_cfg.label_map, regenerate_source_id=decoder_cfg.regenerate_source_id) else: raise ValueError('Unknown decoder type: {}!'.format( params.decoder.type)) parser = retinanet_input.Parser( output_size=self.task_config.model.input_size[:2], min_level=self.task_config.model.min_level, max_level=self.task_config.model.max_level, num_scales=self.task_config.model.anchor.num_scales, aspect_ratios=self.task_config.model.anchor.aspect_ratios, anchor_size=self.task_config.model.anchor.anchor_size, dtype=params.dtype, match_threshold=params.parser.match_threshold, unmatched_threshold=params.parser.unmatched_threshold, aug_rand_hflip=params.parser.aug_rand_hflip, aug_scale_min=params.parser.aug_scale_min, aug_scale_max=params.parser.aug_scale_max, skip_crowd_during_training=params.parser. skip_crowd_during_training, max_num_instances=params.parser.max_num_instances) reader = input_reader.InputReader( params, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type), decoder_fn=decoder.decode, parser_fn=parser.parse_fn(params.is_training)) dataset = reader.read(input_context=input_context) return dataset
def build_inputs(self, params, input_context=None): """Builds classification input.""" num_classes = self.task_config.model.num_classes input_size = self.task_config.model.input_size decoder = classification_input.Decoder() parser = classification_input.Parser(output_size=input_size[:2], num_classes=num_classes, aug_policy=params.aug_policy, dtype=params.dtype) reader = input_reader.InputReader( params, dataset_fn=dataset_fn.pick_dataset_fn(params.file_type), decoder_fn=decoder.decode, parser_fn=parser.parse_fn(params.is_training)) dataset = reader.read(input_context=input_context) return dataset