def construct_model_and_anchors(image_size, use_gt_boxes_for_masks): num_classes = 3 min_level = 3 max_level = 4 num_scales = 3 aspect_ratios = [1.0] anchor_boxes = anchor.Anchor(min_level=min_level, max_level=max_level, num_scales=num_scales, aspect_ratios=aspect_ratios, anchor_size=3, image_size=image_size).multilevel_boxes num_anchors_per_location = len(aspect_ratios) * num_scales input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3]) backbone = resnet.ResNet(model_id=50, input_specs=input_specs) decoder = fpn.FPN(min_level=min_level, max_level=max_level, input_specs=backbone.output_specs) rpn_head = dense_prediction_heads.RPNHead( min_level=min_level, max_level=max_level, num_anchors_per_location=num_anchors_per_location) detection_head = instance_heads.DetectionHead(num_classes=num_classes) roi_generator_obj = roi_generator.MultilevelROIGenerator() roi_sampler_obj = roi_sampler.ROISampler() roi_aligner_obj = roi_aligner.MultilevelROIAligner() detection_generator_obj = detection_generator.DetectionGenerator() mask_head = deep_instance_heads.DeepMaskHead(num_classes=num_classes, upsample_factor=2) mask_sampler_obj = mask_sampler.MaskSampler(mask_target_size=28, num_sampled_masks=1) mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14) model = maskrcnn_model.DeepMaskRCNNModel( backbone, decoder, rpn_head, detection_head, roi_generator_obj, roi_sampler_obj, roi_aligner_obj, detection_generator_obj, mask_head, mask_sampler_obj, mask_roi_aligner_obj, use_gt_boxes_for_masks=use_gt_boxes_for_masks) return model, anchor_boxes
def build_maskrcnn(input_specs: tf.keras.layers.InputSpec, model_config: deep_mask_head_rcnn_config.DeepMaskHeadRCNN, l2_regularizer: tf.keras.regularizers.Regularizer = None): """Builds Mask R-CNN model.""" norm_activation_config = model_config.norm_activation backbone = backbones.factory.build_backbone( input_specs=input_specs, backbone_config=model_config.backbone, norm_activation_config=norm_activation_config, l2_regularizer=l2_regularizer) decoder = decoder_factory.build_decoder(input_specs=backbone.output_specs, model_config=model_config, l2_regularizer=l2_regularizer) rpn_head_config = model_config.rpn_head roi_generator_config = model_config.roi_generator roi_sampler_config = model_config.roi_sampler roi_aligner_config = model_config.roi_aligner detection_head_config = model_config.detection_head generator_config = model_config.detection_generator num_anchors_per_location = (len(model_config.anchor.aspect_ratios) * model_config.anchor.num_scales) rpn_head = dense_prediction_heads.RPNHead( min_level=model_config.min_level, max_level=model_config.max_level, num_anchors_per_location=num_anchors_per_location, num_convs=rpn_head_config.num_convs, num_filters=rpn_head_config.num_filters, use_separable_conv=rpn_head_config.use_separable_conv, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer) detection_head = instance_heads.DetectionHead( num_classes=model_config.num_classes, num_convs=detection_head_config.num_convs, num_filters=detection_head_config.num_filters, use_separable_conv=detection_head_config.use_separable_conv, num_fcs=detection_head_config.num_fcs, fc_dims=detection_head_config.fc_dims, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer) roi_generator_obj = roi_generator.MultilevelROIGenerator( pre_nms_top_k=roi_generator_config.pre_nms_top_k, pre_nms_score_threshold=roi_generator_config.pre_nms_score_threshold, pre_nms_min_size_threshold=( roi_generator_config.pre_nms_min_size_threshold), nms_iou_threshold=roi_generator_config.nms_iou_threshold, num_proposals=roi_generator_config.num_proposals, test_pre_nms_top_k=roi_generator_config.test_pre_nms_top_k, test_pre_nms_score_threshold=( roi_generator_config.test_pre_nms_score_threshold), test_pre_nms_min_size_threshold=( roi_generator_config.test_pre_nms_min_size_threshold), test_nms_iou_threshold=roi_generator_config.test_nms_iou_threshold, test_num_proposals=roi_generator_config.test_num_proposals, use_batched_nms=roi_generator_config.use_batched_nms) roi_sampler_obj = roi_sampler.ROISampler( mix_gt_boxes=roi_sampler_config.mix_gt_boxes, num_sampled_rois=roi_sampler_config.num_sampled_rois, foreground_fraction=roi_sampler_config.foreground_fraction, foreground_iou_threshold=roi_sampler_config.foreground_iou_threshold, background_iou_high_threshold=( roi_sampler_config.background_iou_high_threshold), background_iou_low_threshold=( roi_sampler_config.background_iou_low_threshold)) roi_aligner_obj = roi_aligner.MultilevelROIAligner( crop_size=roi_aligner_config.crop_size, sample_offset=roi_aligner_config.sample_offset) detection_generator_obj = detection_generator.DetectionGenerator( apply_nms=True, pre_nms_top_k=generator_config.pre_nms_top_k, pre_nms_score_threshold=generator_config.pre_nms_score_threshold, nms_iou_threshold=generator_config.nms_iou_threshold, max_num_detections=generator_config.max_num_detections, use_batched_nms=generator_config.use_batched_nms) if model_config.include_mask: mask_head = deep_instance_heads.DeepMaskHead( num_classes=model_config.num_classes, upsample_factor=model_config.mask_head.upsample_factor, num_convs=model_config.mask_head.num_convs, num_filters=model_config.mask_head.num_filters, use_separable_conv=model_config.mask_head.use_separable_conv, activation=model_config.norm_activation.activation, norm_momentum=model_config.norm_activation.norm_momentum, norm_epsilon=model_config.norm_activation.norm_epsilon, kernel_regularizer=l2_regularizer, class_agnostic=model_config.mask_head.class_agnostic, convnet_variant=model_config.mask_head.convnet_variant) mask_sampler_obj = mask_sampler.MaskSampler( mask_target_size=(model_config.mask_roi_aligner.crop_size * model_config.mask_head.upsample_factor), num_sampled_masks=model_config.mask_sampler.num_sampled_masks) mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner( crop_size=model_config.mask_roi_aligner.crop_size, sample_offset=model_config.mask_roi_aligner.sample_offset) else: mask_head = None mask_sampler_obj = None mask_roi_aligner_obj = None model = deep_maskrcnn_model.DeepMaskRCNNModel( backbone=backbone, decoder=decoder, rpn_head=rpn_head, detection_head=detection_head, roi_generator=roi_generator_obj, roi_sampler=roi_sampler_obj, roi_aligner=roi_aligner_obj, detection_generator=detection_generator_obj, mask_head=mask_head, mask_sampler=mask_sampler_obj, mask_roi_aligner=mask_roi_aligner_obj, use_gt_boxes_for_masks=model_config.use_gt_boxes_for_masks) return model
def test_forward(self, use_gt_boxes_for_masks, training): num_classes = 3 min_level = 3 max_level = 4 num_scales = 3 aspect_ratios = [1.0] image_size = (256, 256) images = np.random.rand(2, image_size[0], image_size[1], 3) image_shape = np.array([[224, 100], [100, 224]]) anchor_boxes = anchor.Anchor( min_level=min_level, max_level=max_level, num_scales=num_scales, aspect_ratios=aspect_ratios, anchor_size=3, image_size=image_size).multilevel_boxes num_anchors_per_location = len(aspect_ratios) * num_scales input_specs = tf.keras.layers.InputSpec(shape=[None, None, None, 3]) backbone = resnet.ResNet(model_id=50, input_specs=input_specs) decoder = fpn.FPN( min_level=min_level, max_level=max_level, input_specs=backbone.output_specs) rpn_head = dense_prediction_heads.RPNHead( min_level=min_level, max_level=max_level, num_anchors_per_location=num_anchors_per_location) detection_head = instance_heads.DetectionHead( num_classes=num_classes) roi_generator_obj = roi_generator.MultilevelROIGenerator() roi_sampler_obj = roi_sampler.ROISampler() roi_aligner_obj = roi_aligner.MultilevelROIAligner() detection_generator_obj = detection_generator.DetectionGenerator() mask_head = deep_instance_heads.DeepMaskHead( num_classes=num_classes, upsample_factor=2) mask_sampler_obj = mask_sampler.MaskSampler( mask_target_size=28, num_sampled_masks=1) mask_roi_aligner_obj = roi_aligner.MultilevelROIAligner(crop_size=14) model = maskrcnn_model.DeepMaskRCNNModel( backbone, decoder, rpn_head, detection_head, roi_generator_obj, roi_sampler_obj, roi_aligner_obj, detection_generator_obj, mask_head, mask_sampler_obj, mask_roi_aligner_obj, use_gt_boxes_for_masks=use_gt_boxes_for_masks) gt_boxes = tf.zeros((2, 16, 4), dtype=tf.float32) gt_masks = tf.zeros((2, 16, 32, 32)) gt_classes = tf.zeros((2, 16), dtype=tf.int32) results = model(images, image_shape, anchor_boxes, gt_boxes, gt_classes, gt_masks, training=training) self.assertIn('rpn_boxes', results) self.assertIn('rpn_scores', results) if training: self.assertIn('class_targets', results) self.assertIn('box_targets', results) self.assertIn('class_outputs', results) self.assertIn('box_outputs', results) self.assertIn('mask_outputs', results) self.assertEqual(results['mask_targets'].shape, results['mask_outputs'].shape) else: self.assertIn('detection_boxes', results) self.assertIn('detection_scores', results) self.assertIn('detection_classes', results) self.assertIn('num_detections', results) self.assertIn('detection_masks', results)