コード例 #1
0
 def test_deeplabv3_builder(self, backbone_type, input_size, weight_decay):
     num_classes = 21
     input_specs = tf.keras.layers.InputSpec(
         shape=[None, input_size[0], input_size[1], 3])
     model_config = semantic_segmentation_cfg.SemanticSegmentationModel(
         num_classes=num_classes,
         backbone=backbones.Backbone(type=backbone_type,
                                     mobilenet=backbones.MobileNet(
                                         model_id='MobileNetV2',
                                         output_stride=16)),
         decoder=decoders.Decoder(type='aspp',
                                  aspp=decoders.ASPP(level=4,
                                                     num_filters=256,
                                                     dilation_rates=[],
                                                     spp_layer_version='v1',
                                                     output_tensor=True)),
         head=semantic_segmentation_cfg.SegmentationHead(
             level=4,
             low_level=2,
             num_convs=1,
             upsample_factor=2,
             use_depthwise_convolution=True))
     l2_regularizer = (tf.keras.regularizers.l2(weight_decay)
                       if weight_decay else None)
     model = factory.build_segmentation_model(input_specs=input_specs,
                                              model_config=model_config,
                                              l2_regularizer=l2_regularizer)
     quantization_config = common.Quantization()
     _ = qat_factory.build_qat_segmentation_model(
         model=model,
         quantization=quantization_config,
         input_specs=input_specs)
コード例 #2
0
    def _build_model(self):
        input_specs = tf.keras.layers.InputSpec(shape=[self._batch_size] +
                                                self._input_image_size + [3])

        return factory.build_segmentation_model(
            input_specs=input_specs,
            model_config=self.params.task.model,
            l2_regularizer=None)
コード例 #3
0
    def build_model(self):
        """Builds segmentation model."""
        input_specs = tf.keras.layers.InputSpec(
            shape=[None] + self.task_config.model.input_size)

        l2_weight_decay = self.task_config.losses.l2_weight_decay
        # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
        # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
        # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
        l2_regularizer = (tf.keras.regularizers.l2(l2_weight_decay / 2.0)
                          if l2_weight_decay else None)

        model = factory.build_segmentation_model(
            input_specs=input_specs,
            model_config=self.task_config.model,
            l2_regularizer=l2_regularizer)
        return model