def _parse_eval_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] is_crowd = data['groundtruth_is_crowd'] # Gets original image and its size. image = data['image'] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) scales = tf.constant([self._resize_scales[-1]], tf.float32) image_shape = tf.shape(image)[:2] boxes = box_ops.denormalize_boxes(boxes, image_shape) gt_boxes = boxes short_side = scales[0] image, image_info = preprocess_ops.resize_image( image, short_side, max(self._output_size)) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) is_crowd = tf.gather(is_crowd, indices) boxes = box_ops.yxyx_to_cycxhw(boxes) image = tf.image.pad_to_bounding_box(image, 0, 0, self._output_size[0], self._output_size[1]) labels = { 'classes': preprocess_ops.clip_or_pad_to_fixed_size(classes, self._max_num_boxes), 'boxes': preprocess_ops.clip_or_pad_to_fixed_size(boxes, self._max_num_boxes) } labels.update({ 'id': int(data['source_id']), 'image_info': image_info, 'is_crowd': preprocess_ops.clip_or_pad_to_fixed_size(is_crowd, self._max_num_boxes), 'gt_boxes': preprocess_ops.clip_or_pad_to_fixed_size(gt_boxes, self._max_num_boxes), }) return image, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] + self._class_offset boxes = data['groundtruth_boxes'] is_crowd = data['groundtruth_is_crowd'] # Gets original image. image = data['image'] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) do_crop = tf.greater(tf.random.uniform([]), 0.5) if do_crop: # Rescale boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2]) index = tf.random.categorical(tf.zeros([1, 3]), 1)[0] scales = tf.gather([400.0, 500.0, 600.0], index, axis=0) short_side = scales[0] image, image_info = preprocess_ops.resize_image(image, short_side) boxes = preprocess_ops.resize_and_crop_boxes( boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Do croping shape = tf.cast(image_info[1], dtype=tf.int32) h = tf.random.uniform([], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32) w = tf.random.uniform([], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32) i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32) j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, i, j, h, w) boxes = tf.clip_by_value( (boxes[..., :] * tf.cast(tf.stack([shape[0], shape[1], shape[0], shape[1]]), dtype=tf.float32) - tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) / tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0) scales = tf.constant(self._resize_scales, dtype=tf.float32) index = tf.random.categorical(tf.zeros([1, 11]), 1)[0] scales = tf.gather(scales, index, axis=0) image_shape = tf.shape(image)[:2] boxes = box_ops.denormalize_boxes(boxes, image_shape) short_side = scales[0] image, image_info = preprocess_ops.resize_image( image, short_side, max(self._output_size)) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) is_crowd = tf.gather(is_crowd, indices) boxes = box_ops.yxyx_to_cycxhw(boxes) image = tf.image.pad_to_bounding_box(image, 0, 0, self._output_size[0], self._output_size[1]) labels = { 'classes': preprocess_ops.clip_or_pad_to_fixed_size(classes, self._max_num_boxes), 'boxes': preprocess_ops.clip_or_pad_to_fixed_size(boxes, self._max_num_boxes) } return image, labels
def random_crop_image_with_boxes_and_labels(img, boxes, labels, min_scale, aspect_ratio_range, min_overlap_params, max_retry): """Crops a random slice from the input image. The function will correspondingly recompute the bounding boxes and filter out outside boxes and their labels. References: [1] End-to-End Object Detection with Transformers https://arxiv.org/abs/2005.12872 The preprocessing steps: 1. Sample a minimum IoU overlap. 2. For each trial, sample the new image width, height, and top-left corner. 3. Compute the IoUs of bounding boxes with the cropped image and retry if the maximum IoU is below the sampled threshold. 4. Find boxes whose centers are in the cropped image. 5. Compute new bounding boxes in the cropped region and only select those boxes' labels. Args: img: a 'Tensor' of shape [height, width, 3] representing the input image. boxes: a 'Tensor' of shape [N, 4] representing the ground-truth bounding boxes with (ymin, xmin, ymax, xmax). labels: a 'Tensor' of shape [N,] representing the class labels of the boxes. min_scale: a 'float' in [0.0, 1.0) indicating the lower bound of the random scale variable. aspect_ratio_range: a list of two 'float' that specifies the lower and upper bound of the random aspect ratio. min_overlap_params: a list of four 'float' representing the min value, max value, step size, and offset for the minimum overlap sample. max_retry: an 'int' representing the number of trials for cropping. If it is exhausted, no cropping will be performed. Returns: img: a Tensor representing the random cropped image. Can be the original image if max_retry is exhausted. boxes: a Tensor representing the bounding boxes in the cropped image. labels: a Tensor representing the new bounding boxes' labels. """ shape = tf.shape(img) original_h = shape[0] original_w = shape[1] minval, maxval, step, offset = min_overlap_params min_overlap = tf.math.floordiv( tf.random.uniform([], minval=minval, maxval=maxval), step) * step - offset min_overlap = tf.clip_by_value(min_overlap, 0.0, 1.1) if min_overlap > 1.0: return img, boxes, labels aspect_ratio_low = aspect_ratio_range[0] aspect_ratio_high = aspect_ratio_range[1] for _ in tf.range(max_retry): scale_h = tf.random.uniform([], min_scale, 1.0) scale_w = tf.random.uniform([], min_scale, 1.0) new_h = tf.cast( scale_h * tf.cast(original_h, dtype=tf.float32), dtype=tf.int32) new_w = tf.cast( scale_w * tf.cast(original_w, dtype=tf.float32), dtype=tf.int32) # Aspect ratio has to be in the prespecified range aspect_ratio = new_h / new_w if aspect_ratio_low > aspect_ratio or aspect_ratio > aspect_ratio_high: continue left = tf.random.uniform([], 0, original_w - new_w, dtype=tf.int32) right = left + new_w top = tf.random.uniform([], 0, original_h - new_h, dtype=tf.int32) bottom = top + new_h normalized_left = tf.cast( left, dtype=tf.float32) / tf.cast( original_w, dtype=tf.float32) normalized_right = tf.cast( right, dtype=tf.float32) / tf.cast( original_w, dtype=tf.float32) normalized_top = tf.cast( top, dtype=tf.float32) / tf.cast( original_h, dtype=tf.float32) normalized_bottom = tf.cast( bottom, dtype=tf.float32) / tf.cast( original_h, dtype=tf.float32) cropped_box = tf.expand_dims( tf.stack([ normalized_top, normalized_left, normalized_bottom, normalized_right, ]), axis=0) iou = box_ops.bbox_overlap( tf.expand_dims(cropped_box, axis=0), tf.expand_dims(boxes, axis=0)) # (1, 1, n_ground_truth) iou = tf.squeeze(iou, axis=[0, 1]) # If not a single bounding box has a Jaccard overlap of greater than # the minimum, try again if tf.reduce_max(iou) < min_overlap: continue centroids = box_ops.yxyx_to_cycxhw(boxes) mask = tf.math.logical_and( tf.math.logical_and(centroids[:, 0] > normalized_top, centroids[:, 0] < normalized_bottom), tf.math.logical_and(centroids[:, 1] > normalized_left, centroids[:, 1] < normalized_right)) # If not a single bounding box has its center in the crop, try again. if tf.reduce_sum(tf.cast(mask, dtype=tf.int32)) > 0: indices = tf.squeeze(tf.where(mask), axis=1) filtered_boxes = tf.gather(boxes, indices) boxes = tf.clip_by_value( (filtered_boxes[..., :] * tf.cast( tf.stack([original_h, original_w, original_h, original_w]), dtype=tf.float32) - tf.cast(tf.stack([top, left, top, left]), dtype=tf.float32)) / tf.cast(tf.stack([new_h, new_w, new_h, new_w]), dtype=tf.float32), 0.0, 1.0) img = tf.image.crop_to_bounding_box(img, top, left, bottom - top, right - left) labels = tf.gather(labels, indices) break return img, boxes, labels
def preprocess(self, inputs): """Preprocess COCO for DETR.""" image = inputs['image'] boxes = inputs['objects']['bbox'] classes = inputs['objects']['label'] + 1 is_crowd = inputs['objects']['is_crowd'] image = preprocess_ops.normalize_image(image) if self._params.is_training: image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) do_crop = tf.greater(tf.random.uniform([]), 0.5) if do_crop: # Rescale boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2]) index = tf.random.categorical(tf.zeros([1, 3]), 1)[0] scales = tf.gather([400.0, 500.0, 600.0], index, axis=0) short_side = scales[0] image, image_info = preprocess_ops.resize_image(image, short_side) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Do croping shape = tf.cast(image_info[1], dtype=tf.int32) h = tf.random.uniform( [], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32) w = tf.random.uniform( [], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32) i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32) j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, i, j, h, w) boxes = tf.clip_by_value( (boxes[..., :] * tf.cast( tf.stack([shape[0], shape[1], shape[0], shape[1]]), dtype=tf.float32) - tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) / tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0) scales = tf.constant( self._params.resize_scales, dtype=tf.float32) index = tf.random.categorical(tf.zeros([1, 11]), 1)[0] scales = tf.gather(scales, index, axis=0) else: scales = tf.constant([self._params.resize_scales[-1]], tf.float32) image_shape = tf.shape(image)[:2] boxes = box_ops.denormalize_boxes(boxes, image_shape) gt_boxes = boxes short_side = scales[0] image, image_info = preprocess_ops.resize_image( image, short_side, max(self._params.output_size)) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) is_crowd = tf.gather(is_crowd, indices) boxes = box_ops.yxyx_to_cycxhw(boxes) image = tf.image.pad_to_bounding_box( image, 0, 0, self._params.output_size[0], self._params.output_size[1]) labels = { 'classes': preprocess_ops.clip_or_pad_to_fixed_size( classes, self._params.max_num_boxes), 'boxes': preprocess_ops.clip_or_pad_to_fixed_size( boxes, self._params.max_num_boxes) } if not self._params.is_training: labels.update({ 'id': inputs['image/id'], 'image_info': image_info, 'is_crowd': preprocess_ops.clip_or_pad_to_fixed_size( is_crowd, self._params.max_num_boxes), 'gt_boxes': preprocess_ops.clip_or_pad_to_fixed_size( gt_boxes, self._params.max_num_boxes), }) return image, labels
def update_state(self, groundtruths, predictions): """Update the metrics state with prediction and groundtruth data. Args: groundtruths: a dictionary of Tensors including the fields below. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - num_detections: a numpy array of int of shape [batch_size]. - boxes: a numpy array of float of shape [batch_size, K, 4]. - classes: a numpy array of int of shape [batch_size, K]. - difficulties: a numpy array of int of shape [batch_size, K]. predictions: a dictionary of tensors including the fields below. Required fields: - source_id: a numpy array of int or string of shape [batch_size]. - image_info: a numpy array of float of shape [batch_size, 4, 2]. - num_detections: a numpy array of int of shape [batch_size]. - detection_boxes: a numpy array of float of shape [batch_size, K, 4]. - detection_classes: a numpy array of int of shape [batch_size, K]. - detection_scores: a numpy array of float of shape [batch_size, K]. """ # Preprocess potentially aggregated tensors. for k, v in groundtruths.items(): if isinstance(v, tuple): groundtruths[k] = tf.concat(v, axis=0) for k, v in predictions.items(): if isinstance(v, tuple): predictions[k] = tf.concat(v, axis=0) # Change cyclists' type id from 3 to 4, where 3 is reserved for sign. groundtruth_type = tf.cast(groundtruths['classes'], tf.uint8) groundtruth_type = tf.where(tf.equal(groundtruth_type, 3), tf.ones_like(groundtruth_type) * 4, groundtruth_type) prediction_type = tf.cast(predictions['detection_classes'], tf.uint8) prediction_type = tf.where(tf.equal(prediction_type, 3), tf.ones_like(prediction_type) * 4, prediction_type) # Rescale the detection boxes back to original scale. image_scale = tf.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2)) prediction_bbox = predictions['detection_boxes'] / image_scale batch_size = tf.shape(groundtruths['source_id'])[0] for i in tf.range(batch_size): frame_groundtruths = { 'ground_truth_frame_id': groundtruths['source_id'][i], 'ground_truth_bbox': box_ops.yxyx_to_cycxhw( tf.cast(groundtruths['boxes'][i], tf.float32)), 'ground_truth_type': groundtruth_type[i], 'ground_truth_difficulty': tf.cast(groundtruths['difficulties'][i], tf.uint8), } frame_groundtruths = self._remove_padding( frame_groundtruths, groundtruths['num_detections'][i]) frame_predictions = { 'prediction_frame_id': groundtruths['source_id'][i], 'prediction_bbox': box_ops.yxyx_to_cycxhw(tf.cast(prediction_bbox[i], tf.float32)), 'prediction_type': prediction_type[i], 'prediction_score': tf.cast(predictions['detection_scores'][i], tf.float32), 'prediction_overlap_nlz': tf.zeros_like(predictions['detection_scores'][i], dtype=tf.bool) } frame_predictions = self._remove_padding( frame_predictions, predictions['num_detections'][i]) super().update_state(frame_groundtruths, frame_predictions)