def _augment_image(self, image, boxes, classes, is_crowd, area, xs=0.0, ys=0.0, cut=None): """Process a single image prior to the application of patching.""" if self._random_flip: # Randomly flip the image horizontally. image, boxes, _ = preprocess_ops.random_horizontal_flip( image, boxes, seed=self._seed) # Augment the image without resizing image, infos, crop_points = preprocessing_ops.resize_and_jitter_image( image, [self._output_size[0], self._output_size[1]], random_pad=False, letter_box=self._letter_box, jitter=self._random_crop, shiftx=xs, shifty=ys, cut=cut, seed=self._seed) # Clip and clean boxes. boxes, inds = preprocessing_ops.transform_and_clip_boxes( boxes, infos, area_thresh=self._area_thresh, shuffle_boxes=False, filter_and_clip_boxes=True, seed=self._seed) classes, is_crowd, area = self._select_ind(inds, classes, is_crowd, area) # pylint:disable=unbalanced-tuple-unpacking return image, boxes, classes, is_crowd, area, crop_points
def _parse_data(self, data, is_training): image = data['image'] if self._augmenter is not None and is_training: image = self._augmenter.distort(image) image = preprocess_ops.normalize_image(image) category_mask = tf.cast( data['groundtruth_panoptic_category_mask'][:, :, 0], dtype=tf.float32) instance_mask = tf.cast( data['groundtruth_panoptic_instance_mask'][:, :, 0], dtype=tf.float32) # Flips image randomly during training. if self._aug_rand_hflip and is_training: masks = tf.stack([category_mask, instance_mask], axis=0) image, _, masks = preprocess_ops.random_horizontal_flip( image=image, masks=masks) category_mask = masks[0] instance_mask = masks[1] # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, self._output_size, aug_scale_min=self._aug_scale_min if is_training else 1.0, aug_scale_max=self._aug_scale_max if is_training else 1.0) category_mask = self._resize_and_crop_mask(category_mask, image_info, is_training=is_training) instance_mask = self._resize_and_crop_mask(instance_mask, image_info, is_training=is_training) (instance_centers_heatmap, instance_centers_offset, semantic_weights) = self._encode_centers_and_offets( instance_mask=instance_mask[:, :, 0]) # Cast image and labels as self._dtype image = tf.cast(image, dtype=self._dtype) category_mask = tf.cast(category_mask, dtype=self._dtype) instance_mask = tf.cast(instance_mask, dtype=self._dtype) instance_centers_heatmap = tf.cast(instance_centers_heatmap, dtype=self._dtype) instance_centers_offset = tf.cast(instance_centers_offset, dtype=self._dtype) valid_mask = tf.not_equal(category_mask, self._ignore_label) things_mask = tf.not_equal(instance_mask, self._ignore_label) labels = { 'category_mask': category_mask, 'instance_mask': instance_mask, 'instance_centers_heatmap': instance_centers_heatmap, 'instance_centers_offset': instance_centers_offset, 'semantic_weights': semantic_weights, 'valid_mask': valid_mask, 'things_mask': things_mask, 'image_info': image_info } return image, labels
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width]], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: Groundtruth masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. gt_segmentation_mask: Groundtruth mask for segmentation head, this is resized to a fixed size determined by output_size. gt_segmentation_valid_mask: Binary mask that marks the pixels that are supposed to be used in computing the segmentation loss while training. """ segmentation_mask = data['groundtruth_segmentation_mask'] # Flips image randomly during training. if self.aug_rand_hflip: masks = data['groundtruth_instance_masks'] image_mask = tf.concat([data['image'], segmentation_mask], axis=2) image_mask, boxes, masks = preprocess_ops.random_horizontal_flip( image_mask, data['groundtruth_boxes'], masks) segmentation_mask = image_mask[:, :, -1:] image = image_mask[:, :, :-1] data['image'] = image data['groundtruth_boxes'] = boxes data['groundtruth_instance_masks'] = masks image, labels = super(Parser, self)._parse_train_data(data) image_info = labels['image_info'] image_scale = image_info[2, :] offset = image_info[3, :] segmentation_mask = tf.reshape( segmentation_mask, shape=[1, data['height'], data['width']]) segmentation_mask = tf.cast(segmentation_mask, tf.float32) # Pad label and make sure the padded region assigned to the ignore label. # The label is first offset by +1 and then padded with 0. segmentation_mask += 1 segmentation_mask = tf.expand_dims(segmentation_mask, axis=3) segmentation_mask = preprocess_ops.resize_and_crop_masks( segmentation_mask, image_scale, self._output_size, offset) segmentation_mask -= 1 segmentation_mask = tf.where( tf.equal(segmentation_mask, -1), self._segmentation_ignore_label * tf.ones_like(segmentation_mask), segmentation_mask) segmentation_mask = tf.squeeze(segmentation_mask, axis=0) segmentation_valid_mask = tf.not_equal( segmentation_mask, self._segmentation_ignore_label) labels.update({ 'gt_segmentation_mask': segmentation_mask, 'gt_segmentation_valid_mask': segmentation_valid_mask}) return image, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] + self._class_offset boxes = data['groundtruth_boxes'] is_crowd = data['groundtruth_is_crowd'] # Gets original image. image = data['image'] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) do_crop = tf.greater(tf.random.uniform([]), 0.5) if do_crop: # Rescale boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2]) index = tf.random.categorical(tf.zeros([1, 3]), 1)[0] scales = tf.gather([400.0, 500.0, 600.0], index, axis=0) short_side = scales[0] image, image_info = preprocess_ops.resize_image(image, short_side) boxes = preprocess_ops.resize_and_crop_boxes( boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Do croping shape = tf.cast(image_info[1], dtype=tf.int32) h = tf.random.uniform([], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32) w = tf.random.uniform([], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32) i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32) j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, i, j, h, w) boxes = tf.clip_by_value( (boxes[..., :] * tf.cast(tf.stack([shape[0], shape[1], shape[0], shape[1]]), dtype=tf.float32) - tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) / tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0) scales = tf.constant(self._resize_scales, dtype=tf.float32) index = tf.random.categorical(tf.zeros([1, 11]), 1)[0] scales = tf.gather(scales, index, axis=0) image_shape = tf.shape(image)[:2] boxes = box_ops.denormalize_boxes(boxes, image_shape) short_side = scales[0] image, image_info = preprocess_ops.resize_image( image, short_side, max(self._output_size)) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) is_crowd = tf.gather(is_crowd, indices) boxes = box_ops.yxyx_to_cycxhw(boxes) image = tf.image.pad_to_bounding_box(image, 0, 0, self._output_size[0], self._output_size[1]) labels = { 'classes': preprocess_ops.clip_or_pad_to_fixed_size(classes, self._max_num_boxes), 'boxes': preprocess_ops.clip_or_pad_to_fixed_size(boxes, self._max_num_boxes) } return image, labels
def preprocess(self, inputs): """Preprocess COCO for DETR.""" image = inputs['image'] boxes = inputs['objects']['bbox'] classes = inputs['objects']['label'] + 1 is_crowd = inputs['objects']['is_crowd'] image = preprocess_ops.normalize_image(image) if self._params.is_training: image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) do_crop = tf.greater(tf.random.uniform([]), 0.5) if do_crop: # Rescale boxes = box_ops.denormalize_boxes(boxes, tf.shape(image)[:2]) index = tf.random.categorical(tf.zeros([1, 3]), 1)[0] scales = tf.gather([400.0, 500.0, 600.0], index, axis=0) short_side = scales[0] image, image_info = preprocess_ops.resize_image(image, short_side) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Do croping shape = tf.cast(image_info[1], dtype=tf.int32) h = tf.random.uniform( [], 384, tf.math.minimum(shape[0], 600), dtype=tf.int32) w = tf.random.uniform( [], 384, tf.math.minimum(shape[1], 600), dtype=tf.int32) i = tf.random.uniform([], 0, shape[0] - h + 1, dtype=tf.int32) j = tf.random.uniform([], 0, shape[1] - w + 1, dtype=tf.int32) image = tf.image.crop_to_bounding_box(image, i, j, h, w) boxes = tf.clip_by_value( (boxes[..., :] * tf.cast( tf.stack([shape[0], shape[1], shape[0], shape[1]]), dtype=tf.float32) - tf.cast(tf.stack([i, j, i, j]), dtype=tf.float32)) / tf.cast(tf.stack([h, w, h, w]), dtype=tf.float32), 0.0, 1.0) scales = tf.constant( self._params.resize_scales, dtype=tf.float32) index = tf.random.categorical(tf.zeros([1, 11]), 1)[0] scales = tf.gather(scales, index, axis=0) else: scales = tf.constant([self._params.resize_scales[-1]], tf.float32) image_shape = tf.shape(image)[:2] boxes = box_ops.denormalize_boxes(boxes, image_shape) gt_boxes = boxes short_side = scales[0] image, image_info = preprocess_ops.resize_image( image, short_side, max(self._params.output_size)) boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_info[2, :], image_info[1, :], image_info[3, :]) boxes = box_ops.normalize_boxes(boxes, image_info[1, :]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) is_crowd = tf.gather(is_crowd, indices) boxes = box_ops.yxyx_to_cycxhw(boxes) image = tf.image.pad_to_bounding_box( image, 0, 0, self._params.output_size[0], self._params.output_size[1]) labels = { 'classes': preprocess_ops.clip_or_pad_to_fixed_size( classes, self._params.max_num_boxes), 'boxes': preprocess_ops.clip_or_pad_to_fixed_size( boxes, self._params.max_num_boxes) } if not self._params.is_training: labels.update({ 'id': inputs['image/id'], 'image_info': image_info, 'is_crowd': preprocess_ops.clip_or_pad_to_fixed_size( is_crowd, self._params.max_num_boxes), 'gt_boxes': preprocess_ops.clip_or_pad_to_fixed_size( gt_boxes, self._params.max_num_boxes), }) return image, labels
def _parse_train_data(self, data): """Generates images and labels that are usable for model training. We use random flip, random scaling (between 0.6 to 1.3), cropping, and color jittering as data augmentation Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: images: the image tensor. labels: a dict of Tensors that contains labels. """ image = tf.cast(data['image'], dtype=tf.float32) boxes = data['groundtruth_boxes'] classes = data['groundtruth_classes'] image_shape = tf.shape(input=image)[0:2] if self._aug_rand_hflip: image, boxes, _ = preprocess_ops.random_horizontal_flip( image, boxes) # Image augmentation if not self._odapi_augmentation: # Color and lighting jittering if self._aug_rand_hue: image = tf.image.random_hue(image=image, max_delta=.02) if self._aug_rand_contrast: image = tf.image.random_contrast(image=image, lower=0.8, upper=1.25) if self._aug_rand_saturation: image = tf.image.random_saturation(image=image, lower=0.8, upper=1.25) if self._aug_rand_brightness: image = tf.image.random_brightness(image=image, max_delta=.2) image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_ops.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, [self._output_height, self._output_width], padded_size=[self._output_height, self._output_width], aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) unpad_image_shape = tf.cast(tf.shape(image), tf.float32) # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes( boxes, image_scale, image_info[1, :], offset) else: # Color and lighting jittering if self._aug_rand_hue: image = cn_prep_ops.random_adjust_hue(image=image, max_delta=.02) if self._aug_rand_contrast: image = cn_prep_ops.random_adjust_contrast(image=image, min_delta=0.8, max_delta=1.25) if self._aug_rand_saturation: image = cn_prep_ops.random_adjust_saturation(image=image, min_delta=0.8, max_delta=1.25) if self._aug_rand_brightness: image = cn_prep_ops.random_adjust_brightness(image=image, max_delta=.2) sc_image, sc_boxes, classes = cn_prep_ops.random_square_crop_by_scale( image=image, boxes=boxes, labels=classes, scale_min=self._aug_scale_min, scale_max=self._aug_scale_max) image, unpad_image_shape = cn_prep_ops.resize_to_range( image=sc_image, min_dimension=self._output_width, max_dimension=self._output_width, pad_to_max_dimension=True) preprocessed_shape = tf.cast(tf.shape(image), tf.float32) unpad_image_shape = tf.cast(unpad_image_shape, tf.float32) im_box = tf.stack([ 0.0, 0.0, preprocessed_shape[0] / unpad_image_shape[0], preprocessed_shape[1] / unpad_image_shape[1] ]) realigned_bboxes = box_list_ops.change_coordinate_frame( boxlist=box_list.BoxList(sc_boxes), window=im_box) valid_boxes = box_list_ops.assert_or_prune_invalid_boxes( realigned_bboxes.get()) boxes = box_list_ops.to_absolute_coordinates( boxlist=box_list.BoxList(valid_boxes), height=self._output_height, width=self._output_width).get() image_info = tf.stack([ tf.cast(image_shape, dtype=tf.float32), tf.constant([self._output_height, self._output_width], dtype=tf.float32), tf.cast(tf.shape(sc_image)[0:2] / image_shape, dtype=tf.float32), tf.constant([0., 0.]) ]) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) labels = self._build_label(unpad_image_shape=unpad_image_shape, boxes=boxes, classes=classes, image_info=image_info, data=data) if self._bgr_ordering: red, green, blue = tf.unstack(image, num=3, axis=2) image = tf.stack([blue, green, red], axis=2) image = preprocess_ops.normalize_image(image=image, offset=self._channel_means, scale=self._channel_stds) image = tf.cast(image, self._dtype) return image, labels
def _parse_train_data(self, data): """Parses data for training. Args: data: the decoded tensor dictionary from TfExampleDecoder. Returns: image: image tensor that is preproessed to have normalized value and dimension [output_size[0], output_size[1], 3] labels: a dictionary of tensors used for training. The following describes {key: value} pairs in the dictionary. image_info: a 2D `Tensor` that encodes the information of the image and the applied preprocessing. It is in the format of [[original_height, original_width], [scaled_height, scaled_width], anchor_boxes: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, 4] representing anchor boxes at each level. rpn_score_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location]. The height_l and width_l represent the dimension of class logits at l-th level. rpn_box_targets: ordered dictionary with keys [min_level, min_level+1, ..., max_level]. The values are tensor with shape [height_l, width_l, anchors_per_location * 4]. The height_l and width_l represent the dimension of bounding box regression output at l-th level. gt_boxes: Groundtruth bounding box annotations. The box is represented in [y1, x1, y2, x2] format. The coordinates are w.r.t the scaled image that is fed to the network. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances, 4]. gt_classes: Groundtruth classes annotations. The tennsor is padded with -1 to the fixed dimension [self._max_num_instances]. gt_masks: groundtrugh masks cropped by the bounding box and resized to a fixed size determined by mask_crop_size. """ classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] if self._include_mask: masks = data['groundtruth_instance_masks'] is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training: num_groundtruths = tf.shape(classes)[0] with tf.control_dependencies([num_groundtruths, is_crowds]): indices = tf.cond( tf.greater(tf.size(is_crowds), 0), lambda: tf.where(tf.logical_not(is_crowds))[:, 0], lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Gets original image and its size. image = data['image'] if self._augmenter is not None: image = self._augmenter.distort(image) image_shape = tf.shape(image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: if self._include_mask: image, boxes, masks = preprocess_ops.random_horizontal_flip( image, boxes, masks) else: image, boxes, _ = preprocess_ops.random_horizontal_flip( image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = box_ops.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=preprocess_ops.compute_padded_size( self._output_size, 2 ** self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. # Now the coordinates of boxes are w.r.t the scaled image. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes( boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) if self._include_mask: masks = tf.gather(masks, indices) # Transfer boxes to the original image space and do normalization. cropped_boxes = boxes + tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) cropped_boxes /= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) cropped_boxes = box_ops.normalize_boxes(cropped_boxes, image_shape) num_masks = tf.shape(masks)[0] masks = tf.image.crop_and_resize( tf.expand_dims(masks, axis=-1), cropped_boxes, box_indices=tf.range(num_masks, dtype=tf.int32), crop_size=[self._mask_crop_size, self._mask_crop_size], method='bilinear') masks = tf.squeeze(masks, axis=-1) # Assigns anchor targets. # Note that after the target assignment, box targets are absolute pixel # offsets w.r.t. the scaled image. input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size) anchor_boxes = input_anchor(image_size=(image_height, image_width)) anchor_labeler = anchor.RpnAnchorLabeler( self._rpn_match_threshold, self._rpn_unmatched_threshold, self._rpn_batch_size_per_im, self._rpn_fg_fraction) rpn_score_targets, rpn_box_targets = anchor_labeler.label_anchors( anchor_boxes, boxes, tf.cast(tf.expand_dims(classes, axis=-1), dtype=tf.float32)) # Casts input image to self._dtype image = tf.cast(image, dtype=self._dtype) # Packs labels for model_fn outputs. labels = { 'anchor_boxes': anchor_boxes, 'image_info': image_info, 'rpn_score_targets': rpn_score_targets, 'rpn_box_targets': rpn_box_targets, 'gt_boxes': preprocess_ops.clip_or_pad_to_fixed_size(boxes, self._max_num_instances, -1), 'gt_classes': preprocess_ops.clip_or_pad_to_fixed_size(classes, self._max_num_instances, -1), } if self._include_mask: labels['gt_masks'] = preprocess_ops.clip_or_pad_to_fixed_size( masks, self._max_num_instances, -1) return image, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" classes = data['groundtruth_classes'] boxes = data['groundtruth_boxes'] # If not empty, `attributes` is a dict of (name, ground_truth) pairs. # `ground_gruth` of attributes is assumed in shape [N, attribute_size]. # TODO(xianzhi): support parsing attributes weights. attributes = data.get('groundtruth_attributes', {}) is_crowds = data['groundtruth_is_crowd'] # Skips annotations with `is_crowd` = True. if self._skip_crowd_during_training: num_groundtrtuhs = tf.shape(input=classes)[0] with tf.control_dependencies([num_groundtrtuhs, is_crowds]): indices = tf.cond( pred=tf.greater(tf.size(input=is_crowds), 0), true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], false_fn=lambda: tf.cast(tf.range(num_groundtrtuhs), tf. int64)) classes = tf.gather(classes, indices) boxes = tf.gather(boxes, indices) for k, v in attributes.items(): attributes[k] = tf.gather(v, indices) # Gets original image. image = data['image'] # Apply autoaug or randaug. if self._augmenter is not None: image, boxes = self._augmenter.distort_with_boxes(image, boxes) image_shape = tf.shape(input=image)[0:2] # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) # Flips image randomly during training. if self._aug_rand_hflip: image, boxes, _ = preprocess_ops.random_horizontal_flip( image, boxes) # Converts boxes from normalized coordinates to pixel coordinates. boxes = box_ops.denormalize_boxes(boxes, image_shape) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, padded_size=preprocess_ops.compute_padded_size( self._output_size, 2**self._max_level), aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) image_height, image_width, _ = image.get_shape().as_list() # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale, image_info[1, :], offset) # Filters out ground truth boxes that are all zeros. indices = box_ops.get_non_empty_box_indices(boxes) boxes = tf.gather(boxes, indices) classes = tf.gather(classes, indices) for k, v in attributes.items(): attributes[k] = tf.gather(v, indices) # Assigns anchors. input_anchor = anchor.build_anchor_generator( min_level=self._min_level, max_level=self._max_level, num_scales=self._num_scales, aspect_ratios=self._aspect_ratios, anchor_size=self._anchor_size) anchor_boxes = input_anchor(image_size=(image_height, image_width)) anchor_labeler = anchor.AnchorLabeler(self._match_threshold, self._unmatched_threshold) (cls_targets, box_targets, att_targets, cls_weights, box_weights) = anchor_labeler.label_anchors( anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes) # Casts input image to desired data type. image = tf.cast(image, dtype=self._dtype) # Packs labels for model_fn outputs. labels = { 'cls_targets': cls_targets, 'box_targets': box_targets, 'anchor_boxes': anchor_boxes, 'cls_weights': cls_weights, 'box_weights': box_weights, 'image_info': image_info, } if att_targets: labels['attribute_targets'] = att_targets return image, labels
def _parse_train_data(self, data): """Parses data for training.""" # Initialize the shape constants. image = data['image'] boxes = data['groundtruth_boxes'] classes = data['groundtruth_classes'] if self._random_flip: # Randomly flip the image horizontally. image, boxes, _ = preprocess_ops.random_horizontal_flip( image, boxes, seed=self._seed) if not data['is_mosaic']: image, infos, affine = self._jitter_scale( image, [self._image_h, self._image_w], self._letter_box, self._jitter, self._random_pad, self._aug_scale_min, self._aug_scale_max, self._aug_rand_translate, self._aug_rand_angle, self._aug_rand_perspective) # Clip and clean boxes. boxes, inds = preprocessing_ops.transform_and_clip_boxes( boxes, infos, affine=affine, shuffle_boxes=False, area_thresh=self._area_thresh, filter_and_clip_boxes=True, seed=self._seed) classes = tf.gather(classes, inds) info = infos[-1] else: image = tf.image.resize(image, (self._image_h, self._image_w), method='nearest') output_size = tf.cast([self._image_h, self._image_w], tf.float32) boxes_ = bbox_ops.denormalize_boxes(boxes, output_size) inds = bbox_ops.get_non_empty_box_indices(boxes_) boxes = tf.gather(boxes, inds) classes = tf.gather(classes, inds) info = self._pad_infos_object(image) # Apply scaling to the hue saturation and brightness of an image. image = tf.cast(image, dtype=self._dtype) image = image / 255.0 image = preprocessing_ops.image_rand_hsv( image, self._aug_rand_hue, self._aug_rand_saturation, self._aug_rand_brightness, seed=self._seed, darknet=self._darknet or self._level_limits is not None) # Cast the image to the selcted datatype. image, labels = self._build_label(image, boxes, classes, info, inds, data, is_training=True) return image, labels
def _parse_train_data(self, data): """Parses data for training and evaluation.""" image, label = self._prepare_image_and_label(data) if self._crop_size: label = tf.reshape(label, [data['image/height'], data['image/width'], 1]) # If output_size is specified, resize image, and label to desired # output_size. if self._output_size: image = tf.image.resize(image, self._output_size, method='bilinear') label = tf.image.resize(label, self._output_size, method='nearest') image_mask = tf.concat([image, label], axis=2) image_mask_crop = tf.image.random_crop(image_mask, self._crop_size + [4]) image = image_mask_crop[:, :, :-1] label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size) # Flips image randomly during training. if self._aug_rand_hflip: image, _, label = preprocess_ops.random_horizontal_flip( image, masks=label) train_image_size = self._crop_size if self._crop_size else self._output_size # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, train_image_size, train_image_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] # Pad label and make sure the padded region assigned to the ignore label. # The label is first offset by +1 and then padded with 0. label += 1 label = tf.expand_dims(label, axis=3) label = preprocess_ops.resize_and_crop_masks(label, image_scale, train_image_size, offset) label -= 1 label = tf.where(tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label) label = tf.squeeze(label, axis=0) valid_mask = tf.not_equal(label, self._ignore_label) labels = { 'masks': label, 'valid_masks': valid_mask, 'image_info': image_info, } # Cast image as self._dtype image = tf.cast(image, dtype=self._dtype) return image, labels