def test_get_r(Y, K, p, method, expected): """ choose values that simplify the calculations and are similar to observed values """ r = firm.get_r(Y, K, p, method) assert (np.allclose(r, expected))
def inner_loop(outer_loop_vars, p, client): ''' This function solves for the inner loop of the SS. That is, given the guesses of the outer loop variables (r, w, TR, factor) this function solves the households' problems in the SS. Args: outer_loop_vars (tuple): tuple of outer loop variables, (bssmat, nssmat, r, BQ, TR, factor) or (bssmat, nssmat, r, BQ, Y, TR, factor) bssmat (Numpy array): initial guess at savings, size = SxJ nssmat (Numpy array): initial guess at labor supply, size = SxJ BQ (array_like): aggregate bequest amount(s) Y (scalar): real GDP TR (scalar): lump sum transfer amount factor (scalar): scaling factor converting model units to dollars w (scalar): real wage rate p (OG-Core Specifications object): model parameters client (Dask client object): client Returns: (tuple): results from household solution: * euler_errors (Numpy array): errors terms from FOCs, size = 2SxJ * bssmat (Numpy array): savings, size = SxJ * nssmat (Numpy array): labor supply, size = SxJ * new_r (scalar): real interest rate on firm capital * new_r_gov (scalar): real interest rate on government debt * new_r_p (scalar): real interest rate on household portfolio * new_w (scalar): real wage rate * new_TR (scalar): lump sum transfer amount * new_Y (scalar): real GDP * new_factor (scalar): scaling factor converting model units to dollars * new_BQ (array_like): aggregate bequest amount(s) * average_income_model (scalar): average income in model units ''' # unpack variables to pass to function if p.budget_balance: bssmat, nssmat, r, BQ, TR, factor = outer_loop_vars r_p = r Y = 1.0 # placeholder K = 1.0 # placeholder else: bssmat, nssmat, r, BQ, Y, TR, factor = outer_loop_vars K = firm.get_K_from_Y(Y, r, p, 'SS') # initialize array for euler errors euler_errors = np.zeros((2 * p.S, p.J)) w = firm.get_w_from_r(r, p, 'SS') r_gov = fiscal.get_r_gov(r, p) D, D_d, D_f, new_borrowing, debt_service, new_borrowing_f =\ fiscal.get_D_ss(r_gov, Y, p) r_p = aggr.get_r_p(r, r_gov, K, D) bq = household.get_bq(BQ, None, p, 'SS') tr = household.get_tr(TR, None, p, 'SS') ubi = p.ubi_nom_array[-1, :, :] / factor lazy_values = [] for j in range(p.J): guesses = np.append(bssmat[:, j], nssmat[:, j]) euler_params = (r_p, w, bq[:, j], tr[:, j], ubi[:, j], factor, j, p) lazy_values.append( delayed(opt.fsolve)(euler_equation_solver, guesses * .9, args=euler_params, xtol=MINIMIZER_TOL, full_output=True)) if client: futures = client.compute(lazy_values, num_workers=p.num_workers) results = client.gather(futures) else: results = results = compute(*lazy_values, scheduler=dask.multiprocessing.get, num_workers=p.num_workers) # for j, result in results.items(): for j, result in enumerate(results): [solutions, infodict, ier, message] = result euler_errors[:, j] = infodict['fvec'] bssmat[:, j] = solutions[:p.S] nssmat[:, j] = solutions[p.S:] L = aggr.get_L(nssmat, p, 'SS') B = aggr.get_B(bssmat, p, 'SS', False) K_demand_open = firm.get_K(L, p.world_int_rate[-1], p, 'SS') K, K_d, K_f = aggr.get_K_splits(B, K_demand_open, D_d, p.zeta_K[-1]) Y = firm.get_Y(K, L, p, 'SS') if p.zeta_K[-1] == 1.0: new_r = p.world_int_rate[-1] else: new_r = firm.get_r(Y, K, p, 'SS') new_w = firm.get_w_from_r(new_r, p, 'SS') b_s = np.array(list(np.zeros(p.J).reshape(1, p.J)) + list(bssmat[:-1, :])) new_r_gov = fiscal.get_r_gov(new_r, p) new_r_p = aggr.get_r_p(new_r, new_r_gov, K, D) average_income_model = ((new_r_p * b_s + new_w * p.e * nssmat) * p.omega_SS.reshape(p.S, 1) * p.lambdas.reshape(1, p.J)).sum() if p.baseline: new_factor = p.mean_income_data / average_income_model else: new_factor = factor new_BQ = aggr.get_BQ(new_r_p, bssmat, None, p, 'SS', False) new_bq = household.get_bq(new_BQ, None, p, 'SS') tr = household.get_tr(TR, None, p, 'SS') theta = tax.replacement_rate_vals(nssmat, new_w, new_factor, None, p) etr_params_3D = np.tile( np.reshape(p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1)) taxss = tax.net_taxes(new_r_p, new_w, b_s, nssmat, new_bq, factor, tr, ubi, theta, None, None, False, 'SS', p.e, etr_params_3D, p) cssmat = household.get_cons(new_r_p, new_w, b_s, bssmat, nssmat, new_bq, taxss, p.e, p.tau_c[-1, :, :], p) total_tax_revenue, _, agg_pension_outlays, UBI_outlays, _, _, _, _, _, _ =\ aggr.revenue(new_r_p, new_w, b_s, nssmat, new_bq, cssmat, Y, L, K, factor, ubi, theta, etr_params_3D, p, 'SS') G = fiscal.get_G_ss(Y, total_tax_revenue, agg_pension_outlays, TR, UBI_outlays, new_borrowing, debt_service, p) new_TR = fiscal.get_TR(Y, TR, G, total_tax_revenue, agg_pension_outlays, UBI_outlays, p, 'SS') return euler_errors, bssmat, nssmat, new_r, new_r_gov, new_r_p, \ new_w, new_TR, Y, new_factor, new_BQ, average_income_model
def run_TPI(p, client=None): ''' Solve for transition path equilibrium of OG-Core. Args: p (OG-Core Specifications object): model parameters client (Dask client object): client Returns: output (dictionary): dictionary with transition path solution results ''' # unpack tuples of parameters initial_values, ss_vars, theta, baseline_values = get_initial_SS_values(p) (B0, b_sinit, b_splus1init, factor, initial_b, initial_n) =\ initial_values (TRbaseline, Gbaseline, D0_baseline) = baseline_values # Create time path of UBI household benefits and aggregate UBI outlays ubi = p.ubi_nom_array / factor UBI = aggr.get_L(ubi[:p.T], p, 'TPI') print('Government spending breakpoints are tG1: ', p.tG1, '; and tG2:', p.tG2) # Initialize guesses at time paths # Make array of initial guesses for labor supply and savings guesses_b = utils.get_initial_path(initial_b, ss_vars['bssmat_splus1'], p, 'ratio') guesses_n = utils.get_initial_path(initial_n, ss_vars['nssmat'], p, 'ratio') b_mat = guesses_b n_mat = guesses_n ind = np.arange(p.S) # Get path for aggregate savings and labor supply L_init = np.ones((p.T + p.S, )) * ss_vars['Lss'] B_init = np.ones((p.T + p.S, )) * ss_vars['Bss'] L_init[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI') B_init[1:p.T] = aggr.get_B(b_mat[:p.T], p, 'TPI', False)[:p.T - 1] B_init[0] = B0 K_init = B_init * ss_vars['Kss'] / ss_vars['Bss'] K = K_init K_d = K_init * ss_vars['K_d_ss'] / ss_vars['Kss'] K_f = K_init * ss_vars['K_f_ss'] / ss_vars['Kss'] L = L_init B = B_init Y = np.zeros_like(K) Y[:p.T] = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI') Y[p.T:] = ss_vars['Yss'] r = np.zeros_like(Y) r[:p.T] = firm.get_r(Y[:p.T], K[:p.T], p, 'TPI') r[p.T:] = ss_vars['rss'] # For case where economy is small open econ r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1] # Compute other interest rates r_gov = fiscal.get_r_gov(r, p) r_p = aggr.get_r_p(r, r_gov, K, ss_vars['Dss']) # compute w w = np.zeros_like(r) w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI') w[p.T:] = ss_vars['wss'] # initial guesses at fiscal vars if p.budget_balance: if np.abs(ss_vars['TR_ss']) < 1e-13: TR_ss2 = 0.0 # sometimes SS is very small but not zero, # even if taxes are zero, this get's rid of the # approximation error, which affects the pct changes below else: TR_ss2 = ss_vars['TR_ss'] TR = np.ones(p.T + p.S) * TR_ss2 total_tax_revenue = TR - ss_vars['agg_pension_outlays'] G = np.zeros(p.T + p.S) D = np.zeros(p.T + p.S) D_d = np.zeros(p.T + p.S) D_f = np.zeros(p.T + p.S) else: if p.baseline_spending: TR = TRbaseline G = Gbaseline G[p.T:] = ss_vars['Gss'] else: TR = p.alpha_T * Y G = np.ones(p.T + p.S) * ss_vars['Gss'] D = np.ones(p.T + p.S) * ss_vars['Dss'] D_d = D * ss_vars['D_d_ss'] / ss_vars['Dss'] D_f = D * ss_vars['D_f_ss'] / ss_vars['Dss'] total_tax_revenue = np.ones(p.T + p.S) * ss_vars['total_tax_revenue'] # Initialize bequests BQ0 = aggr.get_BQ(r_p[0], initial_b, None, p, 'SS', True) if not p.use_zeta: BQ = np.zeros((p.T + p.S, p.J)) for j in range(p.J): BQ[:, j] = (list(np.linspace(BQ0[j], ss_vars['BQss'][j], p.T)) + [ss_vars['BQss'][j]] * p.S) BQ = np.array(BQ) else: BQ = (list(np.linspace(BQ0, ss_vars['BQss'], p.T)) + [ss_vars['BQss']] * p.S) BQ = np.array(BQ) TPIiter = 0 TPIdist = 10 euler_errors = np.zeros((p.T, 2 * p.S, p.J)) TPIdist_vec = np.zeros(p.maxiter) # TPI loop while (TPIiter < p.maxiter) and (TPIdist >= p.mindist_TPI): r_gov[:p.T] = fiscal.get_r_gov(r[:p.T], p) if not p.budget_balance: K[:p.T] = firm.get_K_from_Y(Y[:p.T], r[:p.T], p, 'TPI') r_p[:p.T] = aggr.get_r_p(r[:p.T], r_gov[:p.T], K[:p.T], D[:p.T]) outer_loop_vars = (r, w, r_p, BQ, TR, theta) euler_errors = np.zeros((p.T, 2 * p.S, p.J)) lazy_values = [] for j in range(p.J): guesses = (guesses_b[:, :, j], guesses_n[:, :, j]) lazy_values.append( delayed(inner_loop)(guesses, outer_loop_vars, initial_values, ubi, j, ind, p)) if client: futures = client.compute(lazy_values, num_workers=p.num_workers) results = client.gather(futures) else: results = results = compute(*lazy_values, scheduler=dask.multiprocessing.get, num_workers=p.num_workers) for j, result in enumerate(results): euler_errors[:, :, j], b_mat[:, :, j], n_mat[:, :, j] = result bmat_s = np.zeros((p.T, p.S, p.J)) bmat_s[0, 1:, :] = initial_b[:-1, :] bmat_s[1:, 1:, :] = b_mat[:p.T - 1, :-1, :] bmat_splus1 = np.zeros((p.T, p.S, p.J)) bmat_splus1[:, :, :] = b_mat[:p.T, :, :] etr_params_4D = np.tile( p.etr_params[:p.T, :, :].reshape(p.T, p.S, 1, p.etr_params.shape[2]), (1, 1, p.J, 1)) bqmat = household.get_bq(BQ, None, p, 'TPI') trmat = household.get_tr(TR, None, p, 'TPI') tax_mat = tax.net_taxes(r_p[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :], bqmat[:p.T, :, :], factor, trmat[:p.T, :, :], ubi[:p.T, :, :], theta, 0, None, False, 'TPI', p.e, etr_params_4D, p) r_p_path = utils.to_timepath_shape(r_p) wpath = utils.to_timepath_shape(w) c_mat = household.get_cons(r_p_path[:p.T, :, :], wpath[:p.T, :, :], bmat_s, bmat_splus1, n_mat[:p.T, :, :], bqmat[:p.T, :, :], tax_mat, p.e, p.tau_c[:p.T, :, :], p) y_before_tax_mat = household.get_y(r_p_path[:p.T, :, :], wpath[:p.T, :, :], bmat_s[:p.T, :, :], n_mat[:p.T, :, :], p) (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays, UBI_outlays, bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue, business_tax_revenue, payroll_tax_revenue, iit_revenue) = aggr.revenue(r_p[:p.T], w[:p.T], bmat_s, n_mat[:p.T, :, :], bqmat[:p.T, :, :], c_mat[:p.T, :, :], Y[:p.T], L[:p.T], K[:p.T], factor, ubi[:p.T, :, :], theta, etr_params_4D, p, 'TPI') total_tax_revenue[:p.T] = total_tax_rev dg_fixed_values = (Y, total_tax_revenue, agg_pension_outlays, UBI_outlays, TR, Gbaseline, D0_baseline) (Dnew, G[:p.T], D_d[:p.T], D_f[:p.T], new_borrowing, debt_service, new_borrowing_f) =\ fiscal.D_G_path(r_gov, dg_fixed_values, p) L[:p.T] = aggr.get_L(n_mat[:p.T], p, 'TPI') B[1:p.T] = aggr.get_B(bmat_splus1[:p.T], p, 'TPI', False)[:p.T - 1] K_demand_open = firm.get_K(L[:p.T], p.world_int_rate[:p.T], p, 'TPI') K[:p.T], K_d[:p.T], K_f[:p.T] = aggr.get_K_splits( B[:p.T], K_demand_open, D_d[:p.T], p.zeta_K[:p.T]) Ynew = firm.get_Y(K[:p.T], L[:p.T], p, 'TPI') rnew = r.copy() rnew[:p.T] = firm.get_r(Ynew[:p.T], K[:p.T], p, 'TPI') # For case where economy is small open econ r[p.zeta_K == 1] = p.world_int_rate[p.zeta_K == 1] r_gov_new = fiscal.get_r_gov(rnew, p) r_p_new = aggr.get_r_p(rnew[:p.T], r_gov_new[:p.T], K[:p.T], Dnew[:p.T]) # compute w wnew = firm.get_w_from_r(rnew[:p.T], p, 'TPI') b_mat_shift = np.append(np.reshape(initial_b, (1, p.S, p.J)), b_mat[:p.T - 1, :, :], axis=0) BQnew = aggr.get_BQ(r_p_new[:p.T], b_mat_shift, None, p, 'TPI', False) bqmat_new = household.get_bq(BQnew, None, p, 'TPI') (total_tax_rev, iit_payroll_tax_revenue, agg_pension_outlays, UBI_outlays, bequest_tax_revenue, wealth_tax_revenue, cons_tax_revenue, business_tax_revenue, payroll_tax_revenue, iit_revenue) = aggr.revenue(r_p_new[:p.T], wnew[:p.T], bmat_s, n_mat[:p.T, :, :], bqmat_new[:p.T, :, :], c_mat[:p.T, :, :], Ynew[:p.T], L[:p.T], K[:p.T], factor, ubi[:p.T, :, :], theta, etr_params_4D, p, 'TPI') total_tax_revenue[:p.T] = total_tax_rev TR_new = fiscal.get_TR(Ynew[:p.T], TR[:p.T], G[:p.T], total_tax_revenue[:p.T], agg_pension_outlays[:p.T], UBI_outlays[:p.T], p, 'TPI') # update vars for next iteration w[:p.T] = wnew[:p.T] r[:p.T] = utils.convex_combo(rnew[:p.T], r[:p.T], p.nu) BQ[:p.T] = utils.convex_combo(BQnew[:p.T], BQ[:p.T], p.nu) D[:p.T] = Dnew[:p.T] Y[:p.T] = utils.convex_combo(Ynew[:p.T], Y[:p.T], p.nu) if not p.baseline_spending: TR[:p.T] = utils.convex_combo(TR_new[:p.T], TR[:p.T], p.nu) guesses_b = utils.convex_combo(b_mat, guesses_b, p.nu) guesses_n = utils.convex_combo(n_mat, guesses_n, p.nu) print('r diff: ', (rnew[:p.T] - r[:p.T]).max(), (rnew[:p.T] - r[:p.T]).min()) print('BQ diff: ', (BQnew[:p.T] - BQ[:p.T]).max(), (BQnew[:p.T] - BQ[:p.T]).min()) print('TR diff: ', (TR_new[:p.T] - TR[:p.T]).max(), (TR_new[:p.T] - TR[:p.T]).min()) print('Y diff: ', (Ynew[:p.T] - Y[:p.T]).max(), (Ynew[:p.T] - Y[:p.T]).min()) if not p.baseline_spending: if TR.all() != 0: TPIdist = np.array( list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list( utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) + list(utils.pct_diff_func(TR_new[:p.T], TR[:p.T]))).max() else: TPIdist = np.array( list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list( utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) + list(np.abs(TR[:p.T]))).max() else: TPIdist = np.array( list(utils.pct_diff_func(rnew[:p.T], r[:p.T])) + list(utils.pct_diff_func(BQnew[:p.T], BQ[:p.T]).flatten()) + list(utils.pct_diff_func(Ynew[:p.T], Y[:p.T]))).max() TPIdist_vec[TPIiter] = TPIdist # After T=10, if cycling occurs, drop the value of nu # wait til after T=10 or so, because sometimes there is a jump up # in the first couple iterations # if TPIiter > 10: # if TPIdist_vec[TPIiter] - TPIdist_vec[TPIiter - 1] > 0: # nu /= 2 # print 'New Value of nu:', nu TPIiter += 1 print('Iteration:', TPIiter) print('\tDistance:', TPIdist) # Compute effective and marginal tax rates for all agents mtrx_params_4D = np.tile( p.mtrx_params[:p.T, :, :].reshape(p.T, p.S, 1, p.mtrx_params.shape[2]), (1, 1, p.J, 1)) mtry_params_4D = np.tile( p.mtry_params[:p.T, :, :].reshape(p.T, p.S, 1, p.mtry_params.shape[2]), (1, 1, p.J, 1)) e_3D = np.tile(p.e.reshape(1, p.S, p.J), (p.T, 1, 1)) mtry_path = tax.MTR_income(r_p_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor, True, e_3D, etr_params_4D, mtry_params_4D, p) mtrx_path = tax.MTR_income(r_p_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor, False, e_3D, etr_params_4D, mtrx_params_4D, p) etr_path = tax.ETR_income(r_p_path[:p.T], wpath[:p.T], bmat_s[:p.T, :, :], n_mat[:p.T, :, :], factor, e_3D, etr_params_4D, p) C = aggr.get_C(c_mat, p, 'TPI') # Note that implicity in this computation is that immigrants' # wealth is all in the form of private capital I_d = aggr.get_I(bmat_splus1[:p.T], K_d[1:p.T + 1], K_d[:p.T], p, 'TPI') I = aggr.get_I(bmat_splus1[:p.T], K[1:p.T + 1], K[:p.T], p, 'TPI') # solve resource constraint # foreign debt service costs debt_service_f = fiscal.get_debt_service_f(r_p, D_f) RC_error = aggr.resource_constraint(Y[:p.T - 1], C[:p.T - 1], G[:p.T - 1], I_d[:p.T - 1], K_f[:p.T - 1], new_borrowing_f[:p.T - 1], debt_service_f[:p.T - 1], r_p[:p.T - 1], p) # Compute total investment (not just domestic) I_total = aggr.get_I(None, K[1:p.T + 1], K[:p.T], p, 'total_tpi') # Compute resource constraint error rce_max = np.amax(np.abs(RC_error)) print('Max absolute value resource constraint error:', rce_max) print('Checking time path for violations of constraints.') for t in range(p.T): household.constraint_checker_TPI(b_mat[t], n_mat[t], c_mat[t], t, p.ltilde) eul_savings = euler_errors[:, :p.S, :].max(1).max(1) eul_laborleisure = euler_errors[:, p.S:, :].max(1).max(1) print('Max Euler error, savings: ', eul_savings) print('Max Euler error labor supply: ', eul_laborleisure) ''' ------------------------------------------------------------------------ Save variables/values so they can be used in other modules ------------------------------------------------------------------------ ''' output = { 'Y': Y[:p.T], 'B': B, 'K': K, 'K_f': K_f, 'K_d': K_d, 'L': L, 'C': C, 'I': I, 'I_total': I_total, 'I_d': I_d, 'BQ': BQ, 'total_tax_revenue': total_tax_revenue, 'business_tax_revenue': business_tax_revenue, 'iit_payroll_tax_revenue': iit_payroll_tax_revenue, 'iit_revenue': iit_revenue, 'payroll_tax_revenue': payroll_tax_revenue, 'TR': TR, 'agg_pension_outlays': agg_pension_outlays, 'bequest_tax_revenue': bequest_tax_revenue, 'wealth_tax_revenue': wealth_tax_revenue, 'cons_tax_revenue': cons_tax_revenue, 'G': G, 'D': D, 'D_f': D_f, 'D_d': D_d, 'r': r, 'r_gov': r_gov, 'r_p': r_p, 'w': w, 'bmat_splus1': bmat_splus1, 'bmat_s': bmat_s[:p.T, :, :], 'n_mat': n_mat[:p.T, :, :], 'c_path': c_mat, 'bq_path': bqmat, 'tr_path': trmat, 'y_before_tax_mat': y_before_tax_mat, 'tax_path': tax_mat, 'eul_savings': eul_savings, 'eul_laborleisure': eul_laborleisure, 'resource_constraint_error': RC_error, 'new_borrowing_f': new_borrowing_f, 'debt_service_f': debt_service_f, 'etr_path': etr_path, 'mtrx_path': mtrx_path, 'mtry_path': mtry_path, 'ubi_path': ubi, 'UBI_path': UBI } tpi_dir = os.path.join(p.output_base, "TPI") utils.mkdirs(tpi_dir) tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl") with open(tpi_vars, "wb") as f: pickle.dump(output, f) if np.any(G) < 0: print('Government spending is negative along transition path' + ' to satisfy budget') if (((TPIiter >= p.maxiter) or (np.absolute(TPIdist) > p.mindist_TPI)) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError('Transition path equlibrium not found' + ' (TPIdist)') if ((np.any(np.absolute(RC_error) >= p.mindist_TPI * 10)) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError('Transition path equlibrium not found ' + '(RC_error)') if ((np.any(np.absolute(eul_savings) >= p.mindist_TPI) or (np.any(np.absolute(eul_laborleisure) > p.mindist_TPI))) and ENFORCE_SOLUTION_CHECKS): raise RuntimeError('Transition path equlibrium not found ' + '(eulers)') return output