コード例 #1
0
    def test_mu_candidates(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        se = gdir.read_pickle('mu_candidates')
        self.assertTrue(se.index[0] == 1802)
        self.assertTrue(se.index[-1] == 2003)

        df = pd.DataFrame()
        df['mu'] = se

        # Check that the moovin average of temp is negatively correlated
        # with the mus
        with netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc')) as nc_r:
            ref_t = nc_r.variables['temp'][:, 1, 1]
        ref_t = np.mean(ref_t.reshape((len(df), 12)), 1)
        ma = np.convolve(ref_t, np.ones(31) / float(31), 'same')
        df['temp'] = ma
        df = df.dropna()
        self.assertTrue(np.corrcoef(df['mu'], df['temp'])[0, 1] < -0.75)
コード例 #2
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_invert_and_run(self):

        from oggm.core.models import flowline, massbalance

        glen_a = cfg.A * 2

        gdir = utils.GlacierDirectory(self.rgin, base_dir=self.testdir)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        centerlines.compute_downstream_lines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.local_mustar_apparent_mb(gdir, tstar=1975, bias=0.0, prcp_fac=1)
        inversion.prepare_for_inversion(gdir)
        v, a = inversion.invert_parabolic_bed(gdir, glen_a=glen_a)
        cfg.PARAMS["bed_shape"] = "parabolic"
        flowline.init_present_time_glacier(gdir)
        mb_mod = massbalance.TstarMassBalanceModel(gdir)
        fls = gdir.read_pickle("model_flowlines")
        model = flowline.FluxBasedModel(fls, mb_model=mb_mod, y0=0.0, fs=0, glen_a=glen_a)
        ref_vol = model.volume_m3
        model.run_until_equilibrium()
        after_vol = model.volume_m3
        np.testing.assert_allclose(ref_vol, after_vol, rtol=0.1)
コード例 #3
0
    def test_flowlines(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle('inversion_flowlines', div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points,
                                     cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(
                        ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(
                        cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        self.assertTrue(sorted(lens) == [1, 1, 3])

        x, y = map(np.array, cls[0].line.xy)
        dis = np.sqrt((x[1:] - x[:-1])**2 + (y[1:] - y[:-1])**2)
        np.testing.assert_allclose(dis * 0 + cfg.PARAMS['flowline_dx'],
                                   dis,
                                   rtol=0.01)
コード例 #4
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_flowlines(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)

        for div_id in gdir.divide_ids:
            cls = gdir.read_pickle("inversion_flowlines", div_id=div_id)
            for cl in cls:
                for j, ip, ob in zip(cl.inflow_indices, cl.inflow_points, cl.inflows):
                    self.assertTrue(cl.line.coords[j] == ip.coords[0])
                    self.assertTrue(ob.flows_to_point.coords[0] == ip.coords[0])
                    self.assertTrue(cl.line.coords[ob.flows_to_indice] == ip.coords[0])

        lens = [len(gdir.read_pickle("centerlines", div_id=i)) for i in [1, 2, 3]]
        self.assertTrue(sorted(lens) == [1, 1, 2])

        x, y = map(np.array, cls[0].line.xy)
        dis = np.sqrt((x[1:] - x[:-1]) ** 2 + (y[1:] - y[:-1]) ** 2)
        np.testing.assert_allclose(dis * 0 + cfg.PARAMS["flowline_dx"], dis, rtol=0.01)
コード例 #5
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_mu_candidates(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        gdirs.append(gdir)
        climate.process_histalp_nonparallel(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        se = gdir.read_pickle("mu_candidates")[2.5]
        self.assertTrue(se.index[0] == 1802)
        self.assertTrue(se.index[-1] == 2003)

        df = pd.DataFrame()
        df["mu"] = se

        # Check that the moovin average of temp is negatively correlated
        # with the mus
        with netCDF4.Dataset(get_demo_file("histalp_merged_hef.nc")) as nc_r:
            ref_t = nc_r.variables["temp"][:, 1, 1]
        ref_t = np.mean(ref_t.reshape((len(df), 12)), 1)
        ma = np.convolve(ref_t, np.ones(31) / float(31), "same")
        df["temp"] = ma
        df = df.dropna()
        self.assertTrue(np.corrcoef(df["mu"], df["temp"])[0, 1] < -0.75)
コード例 #6
0
    def test_invert_and_run(self):

        from oggm.core.models import flowline, massbalance

        glen_a = cfg.A * 2

        gdir = utils.GlacierDirectory(self.rgin, base_dir=self.testdir)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        centerlines.compute_downstream_lines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.local_mustar_apparent_mb(gdir, tstar=1975, bias=0.)
        inversion.prepare_for_inversion(gdir)
        v, a = inversion.invert_parabolic_bed(gdir, glen_a=glen_a)
        cfg.PARAMS['bed_shape'] = 'parabolic'
        flowline.init_present_time_glacier(gdir)
        mb_mod = massbalance.TstarMassBalanceModel(gdir)
        fls = gdir.read_pickle('model_flowlines')
        model = flowline.FluxBasedModel(fls,
                                        mb_model=mb_mod,
                                        y0=0.,
                                        fs=0,
                                        glen_a=glen_a)
        ref_vol = model.volume_m3
        model.run_until_equilibrium()
        after_vol = model.volume_m3
        np.testing.assert_allclose(ref_vol, after_vol, rtol=0.1)
コード例 #7
0
ファイル: test_graphics.py プロジェクト: JohannesUIBK/oggm
def test_ice_cap():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_icecap')
    utils.mkdir(testdir)

    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-05.08389.tif')
    cfg.PARAMS['border'] = 20
    cfg.set_divides_db(get_demo_file('divides_RGI50-05.08389.shp'))

    hef_file = get_demo_file('RGI50-05.08389.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have five groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group))==5

    # This just checks that it works
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir, ax=ax, add_intersects=True,
                                  add_touches=True)
    fig.tight_layout()
    return fig
コード例 #8
0
ファイル: test_graphics.py プロジェクト: JohannesUIBK/oggm
def test_nodivide_corrected():

    # test directory
    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_nodiv')
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    hef_file = get_demo_file('Hintereisferner_RGI5.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir, ax=ax, corrected=True,
                                  add_intersects=True, add_touches=True)
    fig.tight_layout()

    shutil.rmtree(testdir)
    return fig
コード例 #9
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_distribute(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13
        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = cfg.FS * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v) ** 2

        import scipy.optimize as optimization

        out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-1)["x"]
        glen_a = cfg.A * out[0]
        fs = cfg.FS * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
        np.testing.assert_allclose(ref_v, v)

        inversion.distribute_thickness(gdir, how="per_altitude", add_nc_name=True)
        inversion.distribute_thickness(gdir, how="per_interpolation", add_slope=False, add_nc_name=True)

        grids_file = gdir.get_filepath("gridded_data")
        with netCDF4.Dataset(grids_file) as nc:
            t1 = nc.variables["thickness_per_altitude"][:]
            t2 = nc.variables["thickness_per_interpolation"][:]

        np.testing.assert_allclose(np.sum(t1), np.sum(t2))
        if not HAS_NEW_GDAL:
            np.testing.assert_allclose(np.max(t1), np.max(t2), atol=30)
コード例 #10
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_geom_width(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
コード例 #11
0
    def test_geom_width(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
コード例 #12
0
def test_coxe():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_coxe')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['use_multiple_flowlines'] = False

    hef_file = get_demo_file('rgi_RGI50-01.10299.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A, 'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')

    p = gdir.read_pickle('linear_mb_params')
    mb_mod = massbalance.LinearMassBalanceModel(ela_h=p['ela_h'],
                                                grad=p['grad'])
    mb_mod.temp_bias = -0.3
    model = flowline.FluxBasedModel(fls,
                                    mb_model=mb_mod,
                                    y0=0,
                                    is_tidewater=True)

    # run
    model.run_until(200)
    assert model.calving_m3_since_y0 > 0

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
コード例 #13
0
ファイル: test_graphics.py プロジェクト: JohannesUIBK/oggm
def test_coxe():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_coxe')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-01.10299.tif')
    cfg.PARAMS['border'] = 40
    cfg.PARAMS['use_multiple_flowlines'] = False

    hef_file = get_demo_file('rgi_RGI50-01.10299.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A,
                                                     'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')

    p = gdir.read_pickle('linear_mb_params')
    mb_mod = massbalance.LinearMassBalanceModel(ela_h=p['ela_h'],
                                                grad=p['grad'])
    mb_mod.temp_bias = -0.3
    model = flowline.FluxBasedModel(fls, mb_model=mb_mod, y0=0,
                                    is_tidewater=True)

    # run
    model.run_until(200)
    assert model.calving_m3_since_y0 > 0

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
コード例 #14
0
    def test_width(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
            geometry.catchment_width_correction(gdir)

        area = 0.
        otherarea = 0.
        hgt = []
        harea = []
        for i in gdir.divide_ids:
            cls = gdir.read_pickle('inversion_flowlines', div_id=i)
            for cl in cls:
                harea.extend(list(cl.widths * cl.dx))
                hgt.extend(list(cl.surface_h))
                area += np.sum(cl.widths * cl.dx)
            nc = netCDF4.Dataset(gdir.get_filepath('gridded_data', div_id=i))
            otherarea += np.sum(nc.variables['glacier_mask'][:])
            nc.close()

        nc = netCDF4.Dataset(gdir.get_filepath('gridded_data', div_id=0))
        mask = nc.variables['glacier_mask'][:]
        topo = nc.variables['topo_smoothed'][:]
        nc.close()
        rhgt = topo[np.where(mask)][:]

        tdf = gpd.GeoDataFrame.from_file(gdir.get_filepath('outlines'))
        np.testing.assert_allclose(area, otherarea, rtol=0.1)
        area *= (gdir.grid.dx)**2
        otherarea *= (gdir.grid.dx)**2
        np.testing.assert_allclose(area * 10**-6,
                                   np.float(tdf['AREA']),
                                   rtol=1e-4)

        # Check for area distrib
        bins = np.arange(utils.nicenumber(np.min(hgt), 50, lower=True),
                         utils.nicenumber(np.max(hgt), 50) + 1, 50.)
        h1, b = np.histogram(hgt, weights=harea, density=True, bins=bins)
        h2, b = np.histogram(rhgt, density=True, bins=bins)
        self.assertTrue(utils.rmsd(h1 * 100 * 50, h2 * 100 * 50) < 1)
コード例 #15
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_geom_width(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
コード例 #16
0
    def test_geom_width(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
コード例 #17
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_width(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
            geometry.catchment_width_correction(gdir)

        area = 0.
        otherarea = 0.
        hgt = []
        harea = []
        for i in gdir.divide_ids:
            cls = gdir.read_pickle('inversion_flowlines', div_id=i)
            for cl in cls:
                harea.extend(list(cl.widths * cl.dx))
                hgt.extend(list(cl.surface_h))
                area += np.sum(cl.widths * cl.dx)
            nc = netCDF4.Dataset(gdir.get_filepath('gridded_data', div_id=i))
            otherarea += np.sum(nc.variables['glacier_mask'][:])
            nc.close()

        nc = netCDF4.Dataset(gdir.get_filepath('gridded_data', div_id=0))
        mask = nc.variables['glacier_mask'][:]
        topo = nc.variables['topo_smoothed'][:]
        nc.close()
        rhgt = topo[np.where(mask)][:]

        tdf = gpd.GeoDataFrame.from_file(gdir.get_filepath('outlines'))
        np.testing.assert_allclose(area, otherarea, rtol=0.1)
        area *= (gdir.grid.dx) ** 2
        otherarea *= (gdir.grid.dx) ** 2
        np.testing.assert_allclose(area * 10**-6, np.float(tdf['AREA']), rtol=1e-4)

        # Check for area distrib
        bins = np.arange(utils.nicenumber(np.min(hgt), 50, lower=True),
                         utils.nicenumber(np.max(hgt), 50)+1,
                         50.)
        h1, b = np.histogram(hgt, weights=harea, density=True, bins=bins)
        h2, b = np.histogram(rhgt, density=True, bins=bins)
        self.assertTrue(utils.rmsd(h1*100*50, h2*100*50) < 1)
コード例 #18
0
ファイル: test_graphics.py プロジェクト: JohannesUIBK/oggm
def test_chhota_shigri():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_chhota')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_chhota_shigri.tif')
    cfg.PARAMS['border'] = 60
    cfg.set_divides_db(get_demo_file('divides_RGI50-14.15990.shp'))

    hef_file = get_demo_file('RGI50-14.15990.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have two groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group)) == 2

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A,
                                                     'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')
    for fl in fls:
        fl.thick = np.clip(fl.thick, 100, 1000)
    model = flowline.FlowlineModel(fls)

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
コード例 #19
0
def test_chhota_shigri():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_chhota')
    utils.mkdir(testdir)

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_chhota_shigri.tif')
    cfg.PARAMS['border'] = 60
    cfg.set_divides_db(get_demo_file('divides_RGI50-14.15990.shp'))

    hef_file = get_demo_file('RGI50-14.15990.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have two groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group)) == 2

    # Just check if the rest runs
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.apparent_mb_from_linear_mb(gdir)
    inversion.prepare_for_inversion(gdir)
    inversion.volume_inversion(gdir, use_cfg_params={'glen_a': cfg.A, 'fs': 0})
    inversion.filter_inversion_output(gdir)

    flowline.init_present_time_glacier(gdir)

    fls = gdir.read_pickle('model_flowlines')
    for fl in fls:
        fl.thick = np.clip(fl.thick, 100, 1000)
    model = flowline.FlowlineModel(fls)

    fig, ax = plt.subplots()
    graphics.plot_modeloutput_map(gdir, ax=ax, model=model)
    fig.tight_layout()
    return fig
コード例 #20
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_width(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)

        area = 0.0
        otherarea = 0.0
        hgt = []
        harea = []
        for i in gdir.divide_ids:
            cls = gdir.read_pickle("inversion_flowlines", div_id=i)
            for cl in cls:
                harea.extend(list(cl.widths * cl.dx))
                hgt.extend(list(cl.surface_h))
                area += np.sum(cl.widths * cl.dx)
            with netCDF4.Dataset(gdir.get_filepath("gridded_data", div_id=i)) as nc:
                otherarea += np.sum(nc.variables["glacier_mask"][:])

        with netCDF4.Dataset(gdir.get_filepath("gridded_data", div_id=0)) as nc:
            mask = nc.variables["glacier_mask"][:]
            topo = nc.variables["topo_smoothed"][:]
        rhgt = topo[np.where(mask)][:]

        tdf = gpd.GeoDataFrame.from_file(gdir.get_filepath("outlines"))
        np.testing.assert_allclose(area, otherarea, rtol=0.1)
        area *= (gdir.grid.dx) ** 2
        otherarea *= (gdir.grid.dx) ** 2
        np.testing.assert_allclose(area * 10 ** -6, np.float(tdf["AREA"]), rtol=1e-4)

        # Check for area distrib
        bins = np.arange(utils.nicenumber(np.min(hgt), 50, lower=True), utils.nicenumber(np.max(hgt), 50) + 1, 50.0)
        h1, b = np.histogram(hgt, weights=harea, density=True, bins=bins)
        h2, b = np.histogram(rhgt, density=True, bins=bins)
        self.assertTrue(utils.rmsd(h1 * 100 * 50, h2 * 100 * 50) < 1)
コード例 #21
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_find_tstars(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        gdirs = []
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
            geometry.catchment_width_correction(gdir)
            gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_stars, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])

        y, t, p = climate.mb_yearly_climate_on_glacier(gdir, div_id=0)

        # which years to look at
        selind = np.searchsorted(y, mbdf.index)
        t = t[selind]
        p = p[selind]

        mu_yr_clim = gdir.read_pickle('mu_candidates', div_id=0)
        for t_s, rmd in zip(t_stars, bias):
            mb_per_mu = p - mu_yr_clim.loc[t_s] * t
            md = utils.md(mbdf['ANNUAL_BALANCE'], mb_per_mu)
            np.testing.assert_allclose(md, rmd)
            self.assertTrue(np.abs(md/np.mean(mbdf['ANNUAL_BALANCE'])) < 0.1)
            r = utils.corrcoef(mbdf['ANNUAL_BALANCE'], mb_per_mu)
            self.assertTrue(r > 0.8)
コード例 #22
0
    def test_find_tstars(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        gdirs = []
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
            geometry.catchment_width_correction(gdir)
            gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_stars, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])

        y, t, p = climate.mb_yearly_climate_on_glacier(gdir, div_id=0)

        # which years to look at
        selind = np.searchsorted(y, mbdf.index)
        t = t[selind]
        p = p[selind]

        mu_yr_clim = gdir.read_pickle('mu_candidates', div_id=0)
        for t_s, rmd in zip(t_stars, bias):
            mb_per_mu = p - mu_yr_clim.loc[t_s] * t
            md = utils.md(mbdf['ANNUAL_BALANCE'], mb_per_mu)
            np.testing.assert_allclose(md, rmd)
            self.assertTrue(np.abs(md / np.mean(mbdf['ANNUAL_BALANCE'])) < 0.1)
            r = utils.corrcoef(mbdf['ANNUAL_BALANCE'], mb_per_mu)
            self.assertTrue(r > 0.8)
コード例 #23
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_mu_candidates(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        gdirs = []
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
            gis.define_glacier_region(gdir, entity=entity)
            gis.glacier_masks(gdir)
            centerlines.compute_centerlines(gdir)
            geometry.initialize_flowlines(gdir)
            geometry.catchment_area(gdir)
            geometry.catchment_width_geom(gdir)
            geometry.catchment_width_correction(gdir)
            gdirs.append(gdir)
        climate.distribute_climate_data(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        se = gdir.read_pickle('mu_candidates')
        self.assertTrue(se.index[0] == 1802)
        self.assertTrue(se.index[-1] == 2003)

        df = pd.DataFrame()
        df['mu'] = se

        # Check that the moovin average of temp is negatively correlated
        # with the mus
        nc_r = netCDF4.Dataset(get_demo_file('histalp_merged_hef.nc'))
        ref_t = nc_r.variables['temp'][:, 1, 1]
        nc_r.close()
        ref_t = np.mean(ref_t.reshape((len(df), 12)), 1)
        ma = np.convolve(ref_t, np.ones(31) / float(31), 'same')
        df['temp'] = ma
        df = df.dropna()
        self.assertTrue(np.corrcoef(df['mu'], df['temp'])[0, 1] < -0.75)
コード例 #24
0
def test_ice_cap():

    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_icecap')
    utils.mkdir(testdir)

    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('dem_RGI50-05.08389.tif')
    cfg.PARAMS['border'] = 20
    cfg.set_divides_db(get_demo_file('divides_RGI50-05.08389.shp'))

    hef_file = get_demo_file('RGI50-05.08389.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)
    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)

    # We should have five groups
    lines = gdir.read_pickle('downstream_lines', div_id=0)
    assert len(np.unique(lines.group)) == 5

    # This just checks that it works
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir,
                                  ax=ax,
                                  add_intersects=True,
                                  add_touches=True)
    fig.tight_layout()
    return fig
コード例 #25
0
def test_nodivide_corrected():

    # test directory
    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_nodiv')
    if not os.path.exists(testdir):
        os.makedirs(testdir)

    # Init
    cfg.initialize()
    cfg.set_divides_db()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = 40

    hef_file = get_demo_file('Hintereisferner_RGI5.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=True)

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)

    fig, ax = plt.subplots()
    graphics.plot_catchment_width(gdir,
                                  ax=ax,
                                  corrected=True,
                                  add_intersects=True,
                                  add_touches=True)
    fig.tight_layout()

    shutil.rmtree(testdir)
    return fig
コード例 #26
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_invert_hef(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13
        inversion.prepare_for_inversion(gdir)

        lens = [len(gdir.read_pickle("centerlines", div_id=i)) for i in [1, 2, 3]]
        pid = np.argmax(lens) + 1

        # Check how many clips:
        cls = gdir.read_pickle("inversion_input", div_id=pid)
        nabove = 0
        maxs = 0.0
        npoints = 0.0
        for cl in cls:
            # Clip slope to avoid negative and small slopes
            slope = cl["slope_angle"]
            nm = np.where(slope < np.deg2rad(2.0))
            nabove += len(nm[0])
            npoints += len(slope)
            _max = np.max(slope)
            if _max > maxs:
                maxs = _max

        self.assertTrue(nabove == 0)
        self.assertTrue(np.rad2deg(maxs) < 40.0)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = cfg.FS * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v) ** 2

        import scipy.optimize as optimization

        out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)["x"]
        self.assertTrue(out[0] > 0.1)
        self.assertTrue(out[1] > 0.1)
        self.assertTrue(out[0] < 1.1)
        self.assertTrue(out[1] < 1.1)
        glen_a = cfg.A * out[0]
        fs = cfg.FS * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
        np.testing.assert_allclose(ref_v, v)

        lens = [len(gdir.read_pickle("centerlines", div_id=i)) for i in [1, 2, 3]]
        pid = np.argmax(lens) + 1
        cls = gdir.read_pickle("inversion_output", div_id=pid)
        fls = gdir.read_pickle("inversion_flowlines", div_id=pid)
        maxs = 0.0
        for cl, fl in zip(cls, fls):
            thick = cl["thick"]
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max

        np.testing.assert_allclose(242, maxs, atol=40)
コード例 #27
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_local_mustar(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)

        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        self.assertEqual(prcp_fac, 2.5)

        t_star = t_star[-1]
        bias = bias[-1]

        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)

        df = pd.read_csv(gdir.get_filepath("local_mustar", div_id=0))
        mu_ref = gdir.read_pickle("mu_candidates", div_id=0)[prcp_fac].loc[t_star]
        np.testing.assert_allclose(mu_ref, df["mu_star"][0], atol=1e-3)

        # Check for apparent mb to be zeros
        for i in [0] + list(gdir.divide_ids):
            fls = gdir.read_pickle("inversion_flowlines", div_id=i)
            tmb = 0.0
            for fl in fls:
                self.assertTrue(fl.apparent_mb.shape == fl.widths.shape)
                tmb += np.sum(fl.apparent_mb * fl.widths)
            np.testing.assert_allclose(tmb, 0.0, atol=0.01)
            if i == 0:
                continue
            np.testing.assert_allclose(fls[-1].flux[-1], 0.0, atol=0.01)

        # ------ Look for gradient
        # which years to look at
        fls = gdir.read_pickle("inversion_flowlines", div_id=0)
        mb_on_h = np.array([])
        h = np.array([])
        for fl in fls:
            y, t, p = climate.mb_yearly_climate_on_height(gdir, fl.surface_h, prcp_fac)
            selind = np.searchsorted(y, mbdf.index)
            t = np.mean(t[:, selind], axis=1)
            p = np.mean(p[:, selind], axis=1)
            mb_on_h = np.append(mb_on_h, p - mu_ref * t)
            h = np.append(h, fl.surface_h)
        dfg = pd.read_csv(get_demo_file("mbgrads_RGI40-11.00897.csv"), index_col="ALTITUDE").mean(axis=1)
        # Take the altitudes below 3100 and fit a line
        dfg = dfg[dfg.index < 3100]
        pok = np.where(h < 3100)
        from scipy.stats import linregress

        slope_obs, _, _, _, _ = linregress(dfg.index, dfg.values)
        slope_our, _, _, _, _ = linregress(h[pok], mb_on_h[pok])
        np.testing.assert_allclose(slope_obs, slope_our, rtol=0.1)
コード例 #28
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_find_tstars_prcp_fac(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        mb_file = get_demo_file("RGI_WGMS_oetztal.csv")
        mb_file = os.path.join(os.path.dirname(mb_file), "mbdata", "mbdata_RGI40-11.00897.csv")

        cfg.PARAMS["prcp_auto_scaling_factor"] = True

        gdirs = []
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        gdirs.append(gdir)
        climate.process_histalp_nonparallel(gdirs)
        climate.mu_candidates(gdir, div_id=0)

        mbdf = pd.read_csv(mb_file).set_index("YEAR")["ANNUAL_BALANCE"]
        t_stars, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf)

        y, t, p = climate.mb_yearly_climate_on_glacier(gdir, prcp_fac, div_id=0)

        # which years to look at
        selind = np.searchsorted(y, mbdf.index)
        t = t[selind]
        p = p[selind]

        dffac = gdir.read_pickle("prcp_fac_optim").loc[prcp_fac]
        np.testing.assert_allclose(dffac["avg_bias"], np.mean(bias))
        mu_yr_clim = gdir.read_pickle("mu_candidates", div_id=0)[prcp_fac]
        std_bias = []
        for t_s, rmd in zip(t_stars, bias):
            mb_per_mu = p - mu_yr_clim.loc[t_s] * t
            md = utils.md(mbdf, mb_per_mu)
            np.testing.assert_allclose(md, rmd, rtol=1e-4)
            self.assertTrue(np.abs(md / np.mean(mbdf)) < 0.1)
            r = utils.corrcoef(mbdf, mb_per_mu)
            self.assertTrue(r > 0.8)
            std_bias.append(np.std(mb_per_mu) - np.std(mbdf))

        np.testing.assert_allclose(dffac["avg_std_bias"], np.mean(std_bias), rtol=1e-4)

        # test crop years
        cfg.PARAMS["tstar_search_window"] = [1902, 0]
        climate.mu_candidates(gdir, div_id=0)
        t_stars, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf)
        mu_yr_clim = gdir.read_pickle("mu_candidates", div_id=0)[prcp_fac]
        y, t, p = climate.mb_yearly_climate_on_glacier(gdir, prcp_fac, div_id=0)
        selind = np.searchsorted(y, mbdf.index)
        t = t[selind]
        p = p[selind]
        for t_s, rmd in zip(t_stars, bias):
            mb_per_mu = p - mu_yr_clim.loc[t_s] * t
            md = utils.md(mbdf, mb_per_mu)
            np.testing.assert_allclose(md, rmd, rtol=1e-4)
            self.assertTrue(np.abs(md / np.mean(mbdf)) < 0.1)
            r = utils.corrcoef(mbdf, mb_per_mu)
            self.assertTrue(r > 0.8)
            self.assertTrue(t_s >= 1902)

        # test distribute
        cfg.PATHS["wgms_rgi_links"] = get_demo_file("RGI_WGMS_oetztal.csv")
        climate.compute_ref_t_stars(gdirs)
        climate.distribute_t_stars(gdirs)
        cfg.PARAMS["tstar_search_window"] = [0, 0]

        df = pd.read_csv(gdir.get_filepath("local_mustar"))
        np.testing.assert_allclose(df["t_star"], t_s)
        np.testing.assert_allclose(df["bias"], rmd)
        np.testing.assert_allclose(df["prcp_fac"], prcp_fac)

        cfg.PARAMS["prcp_auto_scaling_factor"] = False
コード例 #29
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_invert_hef_nofs(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13

        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = 0.
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                                  glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.00001, 100000),),
                                    tol=1e-4)['x']

        self.assertTrue(out[0] > 0.1)
        self.assertTrue(out[0] < 10)

        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)
        np.testing.assert_allclose(ref_v, v)

        lens = [len(gdir.read_pickle('centerlines', div_id=i)) for i in [1,2,3]]
        pid = np.argmax(lens) + 1
        cls = gdir.read_pickle('inversion_output', div_id=pid)
        fls = gdir.read_pickle('inversion_flowlines', div_id=pid)
        maxs = 0.
        for cl, fl in zip(cls, fls):
            thick = cl['thick']
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max
        atol = 30 if HAS_NEW_GDAL else 10
        np.testing.assert_allclose(242, maxs, atol=atol)

        # check that its not tooo sensitive to the dx
        cfg.PARAMS['flowline_dx'] = 1.
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)
        inversion.prepare_for_inversion(gdir)
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)

        np.testing.assert_allclose(ref_v, v, rtol=0.02)
        cls = gdir.read_pickle('inversion_output', div_id=pid)
        maxs = 0.
        for cl in cls:
            thick = cl['thick']
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max

        np.testing.assert_allclose(242, maxs, atol=atol)
コード例 #30
0
ファイル: test_prepro.py プロジェクト: OGGM/oggm
    def test_invert_hef_nofs(self):

        hef_file = get_demo_file("Hintereisferner.shp")
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13

        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = 0.0
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v) ** 2

        import scipy.optimize as optimization

        out = optimization.minimize(to_optimize, [1], bounds=((0.00001, 100000),), tol=1e-4)["x"]

        self.assertTrue(out[0] > 0.1)
        self.assertTrue(out[0] < 10)

        glen_a = cfg.A * out[0]
        fs = 0.0
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
        np.testing.assert_allclose(ref_v, v)

        lens = [len(gdir.read_pickle("centerlines", div_id=i)) for i in [1, 2, 3]]
        pid = np.argmax(lens) + 1
        cls = gdir.read_pickle("inversion_output", div_id=pid)
        fls = gdir.read_pickle("inversion_flowlines", div_id=pid)
        maxs = 0.0
        for cl, fl in zip(cls, fls):
            thick = cl["thick"]
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max
        np.testing.assert_allclose(242, maxs, atol=25)

        # check that its not tooo sensitive to the dx
        cfg.PARAMS["flowline_dx"] = 1.0
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.process_histalp_nonparallel([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
        mbdf = pd.read_csv(hef_file).set_index("YEAR")
        t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias, prcp_fac=prcp_fac)
        inversion.prepare_for_inversion(gdir)
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)

        np.testing.assert_allclose(ref_v, v, rtol=0.02)
        cls = gdir.read_pickle("inversion_output", div_id=pid)
        maxs = 0.0
        for cl in cls:
            thick = cl["thick"]
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max

        np.testing.assert_allclose(242, maxs, atol=25)
コード例 #31
0
ファイル: __init__.py プロジェクト: JohannesUIBK/oggm
def init_hef(reset=False, border=40, invert_with_sliding=True,
             invert_with_rectangular=True):

    from oggm.core.preprocessing import gis, centerlines, geometry
    from oggm.core.preprocessing import climate, inversion
    import oggm
    import oggm.cfg as cfg
    from oggm.utils import get_demo_file

    # test directory
    testdir = os.path.join(cfg.PATHS['test_dir'], 'tmp_border{}'.format(border))
    if not invert_with_sliding:
        testdir += '_withoutslide'
    if not invert_with_rectangular:
        testdir += '_withoutrectangular'
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = border
    cfg.PARAMS['use_optimized_inversion_params'] = True

    hef_file = get_demo_file('Hintereisferner_RGI5.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)
    if not gdir.has_file('inversion_params'):
        reset = True
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)

    if not reset:
        return gdir

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)
    centerlines.compute_downstream_bedshape(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.process_histalp_nonparallel([gdir])
    climate.mu_candidates(gdir, div_id=0)
    mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE']
    res = climate.t_star_from_refmb(gdir, mbdf)
    climate.local_mustar_apparent_mb(gdir, tstar=res['t_star'][-1],
                                     bias=res['bias'][-1],
                                     prcp_fac=res['prcp_fac'])

    inversion.prepare_for_inversion(gdir, add_debug_var=True,
                                    invert_with_rectangular=invert_with_rectangular)
    ref_v = 0.573 * 1e9

    if invert_with_sliding:
        def to_optimize(x):
            # For backwards compat
            _fd = 1.9e-24 * x[0]
            glen_a = (cfg.N+2) * _fd / 2.
            fs = 5.7e-20 * x[1]
            v, _ = inversion.mass_conservation_inversion(gdir, fs=fs,
                                                         glen_a=glen_a)
            return (v - ref_v)**2

        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-4)['x']
        _fd = 1.9e-24 * out[0]
        glen_a = (cfg.N+2) * _fd / 2.
        fs = 5.7e-20 * out[1]
        v, _ = inversion.mass_conservation_inversion(gdir, fs=fs,
                                                     glen_a=glen_a,
                                                     write=True)
    else:
        def to_optimize(x):
            glen_a = cfg.A * x[0]
            v, _ = inversion.mass_conservation_inversion(gdir, fs=0.,
                                                         glen_a=glen_a)
            return (v - ref_v)**2

        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.01, 10),),
                                    tol=1e-4)['x']
        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.mass_conservation_inversion(gdir, fs=fs,
                                                     glen_a=glen_a,
                                                     write=True)
    d = dict(fs=fs, glen_a=glen_a)
    d['factor_glen_a'] = out[0]
    try:
        d['factor_fs'] = out[1]
    except IndexError:
        d['factor_fs'] = 0.
    gdir.write_pickle(d, 'inversion_params')

    # filter
    inversion.filter_inversion_output(gdir)

    inversion.distribute_thickness(gdir, how='per_altitude',
                                   add_nc_name=True)
    inversion.distribute_thickness(gdir, how='per_interpolation',
                                   add_slope=False, smooth=False,
                                   add_nc_name=True)

    return gdir
コード例 #32
0
ファイル: __init__.py プロジェクト: kaituozhe528/oggm
def init_hef(reset=False,
             border=40,
             invert_with_sliding=True,
             invert_with_rectangular=True):

    from oggm.core.preprocessing import gis, centerlines, geometry
    from oggm.core.preprocessing import climate, inversion
    import oggm
    import oggm.cfg as cfg
    from oggm.utils import get_demo_file

    # test directory
    testdir = os.path.join(cfg.PATHS['test_dir'],
                           'tmp_border{}'.format(border))
    if not invert_with_sliding:
        testdir += '_withoutslide'
    if not invert_with_rectangular:
        testdir += '_withoutrectangular'
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True

    # Init
    cfg.initialize()
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = border

    hef_file = get_demo_file('Hintereisferner_RGI5.shp')
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)
    if not gdir.has_file('inversion_params'):
        reset = True
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)

    if not reset:
        return gdir

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_intersections(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.process_histalp_nonparallel([gdir])
    climate.mu_candidates(gdir, div_id=0)
    mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE']
    res = climate.t_star_from_refmb(gdir, mbdf)
    climate.local_mustar_apparent_mb(gdir,
                                     tstar=res['t_star'][-1],
                                     bias=res['bias'][-1],
                                     prcp_fac=res['prcp_fac'])

    inversion.prepare_for_inversion(
        gdir,
        add_debug_var=True,
        invert_with_rectangular=invert_with_rectangular)
    ref_v = 0.573 * 1e9

    if invert_with_sliding:

        def to_optimize(x):
            # For backwards compat
            _fd = 1.9e-24 * x[0]
            glen_a = (cfg.N + 2) * _fd / 2.
            fs = 5.7e-20 * x[1]
            v, _ = inversion.mass_conservation_inversion(gdir,
                                                         fs=fs,
                                                         glen_a=glen_a)
            return (v - ref_v)**2

        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-4)['x']
        _fd = 1.9e-24 * out[0]
        glen_a = (cfg.N + 2) * _fd / 2.
        fs = 5.7e-20 * out[1]
        v, _ = inversion.mass_conservation_inversion(gdir,
                                                     fs=fs,
                                                     glen_a=glen_a,
                                                     write=True)
    else:

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            v, _ = inversion.mass_conservation_inversion(gdir,
                                                         fs=0.,
                                                         glen_a=glen_a)
            return (v - ref_v)**2

        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.01, 10), ),
                                    tol=1e-4)['x']
        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.mass_conservation_inversion(gdir,
                                                     fs=fs,
                                                     glen_a=glen_a,
                                                     write=True)
    d = dict(fs=fs, glen_a=glen_a)
    d['factor_glen_a'] = out[0]
    try:
        d['factor_fs'] = out[1]
    except IndexError:
        d['factor_fs'] = 0.
    gdir.write_pickle(d, 'inversion_params')

    # filter
    inversion.filter_inversion_output(gdir)

    inversion.distribute_thickness(gdir, how='per_altitude', add_nc_name=True)
    inversion.distribute_thickness(gdir,
                                   how='per_interpolation',
                                   add_slope=False,
                                   smooth=False,
                                   add_nc_name=True)

    return gdir
コード例 #33
0
    def test_distribute(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]

        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13
        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = cfg.FS * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-1)['x']
        glen_a = cfg.A * out[0]
        fs = cfg.FS * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir,
                                              fs=fs,
                                              glen_a=glen_a,
                                              write=True)
        np.testing.assert_allclose(ref_v, v)

        inversion.distribute_thickness(gdir,
                                       how='per_altitude',
                                       add_nc_name=True)
        inversion.distribute_thickness(gdir,
                                       how='per_interpolation',
                                       add_slope=False,
                                       add_nc_name=True)

        grids_file = gdir.get_filepath('gridded_data')
        with netCDF4.Dataset(grids_file) as nc:
            t1 = nc.variables['thickness_per_altitude'][:]
            t2 = nc.variables['thickness_per_interpolation'][:]

        np.testing.assert_allclose(np.sum(t1), np.sum(t2))
        if not HAS_NEW_GDAL:
            np.testing.assert_allclose(np.max(t1), np.max(t2), atol=30)
コード例 #34
0
ファイル: test_prepro.py プロジェクト: fmaussion/oggm
    def test_local_mustar(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)

        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])

        t_star = t_star[-1]
        bias = bias[-1]

        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        df = pd.read_csv(gdir.get_filepath('local_mustar', div_id=0))
        mu_ref = gdir.read_pickle('mu_candidates', div_id=0).loc[t_star]
        np.testing.assert_allclose(mu_ref, df['mu_star'][0], atol=1e-3)

        # Check for apparent mb to be zeros
        for i in [0] + list(gdir.divide_ids):
             fls = gdir.read_pickle('inversion_flowlines', div_id=i)
             tmb = 0.
             for fl in fls:
                 self.assertTrue(fl.apparent_mb.shape == fl.widths.shape)
                 tmb += np.sum(fl.apparent_mb * fl.widths)
             np.testing.assert_allclose(tmb, 0., atol=0.01)
             if i == 0: continue
             np.testing.assert_allclose(fls[-1].flux[-1], 0., atol=0.01)

        # ------ Look for gradient
        # which years to look at
        fls = gdir.read_pickle('inversion_flowlines', div_id=0)
        mb_on_h = np.array([])
        h = np.array([])
        for fl in fls:
            y, t, p = climate.mb_yearly_climate_on_height(gdir, fl.surface_h)
            selind = np.searchsorted(y, mbdf.index)
            t = np.mean(t[:, selind], axis=1)
            p = np.mean(p[:, selind], axis=1)
            mb_on_h = np.append(mb_on_h, p - mu_ref * t)
            h = np.append(h, fl.surface_h)
        dfg = pd.read_csv(get_demo_file('mbgrads_RGI40-11.00897.csv'),
                          index_col='ALTITUDE').mean(axis=1)
        # Take the altitudes below 3100 and fit a line
        dfg = dfg[dfg.index < 3100]
        pok = np.where(h < 3100)
        from scipy.stats import linregress
        slope_obs, _, _, _, _ = linregress(dfg.index, dfg.values)
        slope_our, _, _, _, _ = linregress(h[pok], mb_on_h[pok])
        np.testing.assert_allclose(slope_obs, slope_our, rtol=0.1)
コード例 #35
0
ファイル: __init__.py プロジェクト: OGGM/oggm
def init_hef(reset=False, border=40, invert_with_sliding=True):

    from oggm.core.preprocessing import gis, centerlines, geometry
    from oggm.core.preprocessing import climate, inversion
    import oggm
    import oggm.cfg as cfg
    from oggm.utils import get_demo_file

    # test directory
    testdir = TESTDIR_BASE + "_border{}".format(border)
    if not invert_with_sliding:
        testdir += "_withoutslide"
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True
    if not os.path.exists(os.path.join(testdir, "RGI40-11.00897")):
        reset = True
    if not os.path.exists(os.path.join(testdir, "RGI40-11.00897", "inversion_params.pkl")):
        reset = True

    # Init
    cfg.initialize()
    cfg.PATHS["dem_file"] = get_demo_file("hef_srtm.tif")
    cfg.PATHS["climate_file"] = get_demo_file("histalp_merged_hef.nc")
    cfg.PARAMS["border"] = border

    hef_file = get_demo_file("Hintereisferner.shp")
    entity = gpd.GeoDataFrame.from_file(hef_file).iloc[0]
    gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)

    if not reset:
        return gdir

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.process_histalp_nonparallel([gdir])
    climate.mu_candidates(gdir, div_id=0)
    hef_file = get_demo_file("mbdata_RGI40-11.00897.csv")
    mbdf = pd.read_csv(hef_file).set_index("YEAR")
    t_star, bias, prcp_fac = climate.t_star_from_refmb(gdir, mbdf["ANNUAL_BALANCE"])
    climate.local_mustar_apparent_mb(gdir, tstar=t_star[-1], bias=bias[-1], prcp_fac=prcp_fac)

    inversion.prepare_for_inversion(gdir)
    ref_v = 0.573 * 1e9

    if invert_with_sliding:

        def to_optimize(x):
            # For backwards compat
            _fd = 1.9e-24 * x[0]
            glen_a = (cfg.N + 2) * _fd / 2.0
            fs = 5.7e-20 * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v) ** 2

        out = optimization.minimize(to_optimize, [1, 1], bounds=((0.01, 10), (0.01, 10)), tol=1e-4)["x"]
        _fd = 1.9e-24 * out[0]
        glen_a = (cfg.N + 2) * _fd / 2.0
        fs = 5.7e-20 * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
    else:

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=0.0, glen_a=glen_a)
            return (v - ref_v) ** 2

        out = optimization.minimize(to_optimize, [1], bounds=((0.01, 10),), tol=1e-4)["x"]
        glen_a = cfg.A * out[0]
        fs = 0.0
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a, write=True)
    d = dict(fs=fs, glen_a=glen_a)
    d["factor_glen_a"] = out[0]
    try:
        d["factor_fs"] = out[1]
    except IndexError:
        d["factor_fs"] = 0.0
    gdir.write_pickle(d, "inversion_params")

    inversion.distribute_thickness(gdir, how="per_altitude", add_nc_name=True)
    inversion.distribute_thickness(gdir, how="per_interpolation", add_slope=False, smooth=False, add_nc_name=True)

    return gdir
コード例 #36
0
    def test_invert_hef(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13
        inversion.prepare_for_inversion(gdir)

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        pid = np.argmax(lens) + 1

        # Check how many clips:
        cls = gdir.read_pickle('inversion_input', div_id=pid)
        nabove = 0
        maxs = 0.
        npoints = 0.
        for cl in cls:
            # Clip slope to avoid negative and small slopes
            slope = cl['slope_angle']
            nm = np.where(slope < np.deg2rad(2.))
            nabove += len(nm[0])
            npoints += len(slope)
            _max = np.max(slope)
            if _max > maxs:
                maxs = _max

        self.assertTrue(nabove == 0)
        self.assertTrue(np.rad2deg(maxs) < 40.)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = cfg.FS * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-4)['x']
        self.assertTrue(out[0] > 0.1)
        self.assertTrue(out[1] > 0.1)
        self.assertTrue(out[0] < 1.1)
        self.assertTrue(out[1] < 1.1)
        glen_a = cfg.A * out[0]
        fs = cfg.FS * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir,
                                              fs=fs,
                                              glen_a=glen_a,
                                              write=True)
        np.testing.assert_allclose(ref_v, v)

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        pid = np.argmax(lens) + 1
        cls = gdir.read_pickle('inversion_output', div_id=pid)
        fls = gdir.read_pickle('inversion_flowlines', div_id=pid)
        maxs = 0.
        for cl, fl in zip(cls, fls):
            thick = cl['thick']
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max

        np.testing.assert_allclose(242, maxs, atol=21)
コード例 #37
0
    def test_local_mustar(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)

        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])

        t_star = t_star[-1]
        bias = bias[-1]

        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        df = pd.read_csv(gdir.get_filepath('local_mustar', div_id=0))
        mu_ref = gdir.read_pickle('mu_candidates', div_id=0).loc[t_star]
        np.testing.assert_allclose(mu_ref, df['mu_star'][0], atol=1e-3)

        # Check for apparent mb to be zeros
        for i in [0] + list(gdir.divide_ids):
            fls = gdir.read_pickle('inversion_flowlines', div_id=i)
            tmb = 0.
            for fl in fls:
                self.assertTrue(fl.apparent_mb.shape == fl.widths.shape)
                tmb += np.sum(fl.apparent_mb * fl.widths)
            np.testing.assert_allclose(tmb, 0., atol=0.01)
            if i == 0: continue
            np.testing.assert_allclose(fls[-1].flux[-1], 0., atol=0.01)

        # ------ Look for gradient
        # which years to look at
        fls = gdir.read_pickle('inversion_flowlines', div_id=0)
        mb_on_h = np.array([])
        h = np.array([])
        for fl in fls:
            y, t, p = climate.mb_yearly_climate_on_height(gdir, fl.surface_h)
            selind = np.searchsorted(y, mbdf.index)
            t = np.mean(t[:, selind], axis=1)
            p = np.mean(p[:, selind], axis=1)
            mb_on_h = np.append(mb_on_h, p - mu_ref * t)
            h = np.append(h, fl.surface_h)
        dfg = pd.read_csv(get_demo_file('mbgrads_RGI40-11.00897.csv'),
                          index_col='ALTITUDE').mean(axis=1)
        # Take the altitudes below 3100 and fit a line
        dfg = dfg[dfg.index < 3100]
        pok = np.where(h < 3100)
        from scipy.stats import linregress
        slope_obs, _, _, _, _ = linregress(dfg.index, dfg.values)
        slope_our, _, _, _, _ = linregress(h[pok], mb_on_h[pok])
        np.testing.assert_allclose(slope_obs, slope_our, rtol=0.1)
コード例 #38
0
def init_hef(reset=False, border=40, invert_with_sliding=True):

    # test directory
    testdir = TESTDIR_BASE + '_border{}'.format(border)
    if not invert_with_sliding:
        testdir += '_withoutslide'
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True
    if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897')):
        reset = True
    if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897',
                                       'inversion_params.pkl')):
        reset = True

    # Init
    cfg.initialize()
    cfg.set_divides_db(get_demo_file('HEF_divided.shp'))
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = border

    # loop because for some reason indexing wont work
    hef_file = get_demo_file('Hintereisferner.shp')
    rgidf = gpd.GeoDataFrame.from_file(hef_file)
    for index, entity in rgidf.iterrows():
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)

    if not reset:
        return gdir

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.distribute_climate_data([gdir])
    climate.mu_candidates(gdir, div_id=0)
    hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
    mbdf = pd.read_csv(hef_file).set_index('YEAR')
    t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
    climate.local_mustar_apparent_mb(gdir, tstar=t_star[-1], bias=bias[-1])

    inversion.prepare_for_inversion(gdir)
    ref_v = 0.573 * 1e9

    if invert_with_sliding:
        def to_optimize(x):
            # For backwards compat
            _fd = 1.9e-24 * x[0]
            glen_a = (cfg.N+2) * _fd / 2.
            fs = 5.7e-20 * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                                  glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-4)['x']
        _fd = 1.9e-24 * out[0]
        glen_a = (cfg.N+2) * _fd / 2.
        fs = 5.7e-20 * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)
    else:
        def to_optimize(x):
            glen_a = cfg.A * x[0]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=0.,
                                                  glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.01, 10),),
                                    tol=1e-4)['x']
        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)
    d = dict(fs=fs, glen_a=glen_a)
    d['factor_glen_a'] = out[0]
    try:
        d['factor_fs'] = out[1]
    except IndexError:
        d['factor_fs'] = 0.
    gdir.write_pickle(d, 'inversion_params')

    return gdir
コード例 #39
0
    def test_invert_hef_nofs(self):

        hef_file = get_demo_file('Hintereisferner.shp')
        rgidf = gpd.GeoDataFrame.from_file(hef_file)

        # loop because for some reason indexing wont work
        for index, entity in rgidf.iterrows():
            gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        centerlines.compute_centerlines(gdir)
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)

        # OK. Values from Fischer and Kuhn 2013
        # Area: 8.55
        # meanH = 67+-7
        # Volume = 0.573+-0.063
        # maxH = 242+-13

        inversion.prepare_for_inversion(gdir)

        ref_v = 0.573 * 1e9

        def to_optimize(x):
            glen_a = cfg.A * x[0]
            fs = 0.
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs, glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.00001, 100000), ),
                                    tol=1e-4)['x']

        self.assertTrue(out[0] > 0.1)
        self.assertTrue(out[0] < 10)

        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.invert_parabolic_bed(gdir,
                                              fs=fs,
                                              glen_a=glen_a,
                                              write=True)
        np.testing.assert_allclose(ref_v, v)

        lens = [
            len(gdir.read_pickle('centerlines', div_id=i)) for i in [1, 2, 3]
        ]
        pid = np.argmax(lens) + 1
        cls = gdir.read_pickle('inversion_output', div_id=pid)
        fls = gdir.read_pickle('inversion_flowlines', div_id=pid)
        maxs = 0.
        for cl, fl in zip(cls, fls):
            thick = cl['thick']
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max
        atol = 30 if HAS_NEW_GDAL else 10
        np.testing.assert_allclose(242, maxs, atol=atol)

        # check that its not tooo sensitive to the dx
        cfg.PARAMS['flowline_dx'] = 1.
        geometry.initialize_flowlines(gdir)
        geometry.catchment_area(gdir)
        geometry.catchment_width_geom(gdir)
        geometry.catchment_width_correction(gdir)
        climate.distribute_climate_data([gdir])
        climate.mu_candidates(gdir, div_id=0)
        hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
        mbdf = pd.read_csv(hef_file).set_index('YEAR')
        t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
        t_star = t_star[-1]
        bias = bias[-1]
        climate.local_mustar_apparent_mb(gdir, tstar=t_star, bias=bias)
        inversion.prepare_for_inversion(gdir)
        v, _ = inversion.invert_parabolic_bed(gdir,
                                              fs=fs,
                                              glen_a=glen_a,
                                              write=True)

        np.testing.assert_allclose(ref_v, v, rtol=0.02)
        cls = gdir.read_pickle('inversion_output', div_id=pid)
        maxs = 0.
        for cl in cls:
            thick = cl['thick']
            _max = np.max(thick)
            if _max > maxs:
                maxs = _max

        np.testing.assert_allclose(242, maxs, atol=atol)
コード例 #40
0
ファイル: test_graphics.py プロジェクト: fmaussion/oggm
def init_hef(reset=False, border=40, invert_with_sliding=True):

    # test directory
    testdir = TESTDIR_BASE + '_border{}'.format(border)
    if not invert_with_sliding:
        testdir += '_withoutslide'
    if not os.path.exists(testdir):
        os.makedirs(testdir)
        reset = True
    if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897')):
        reset = True
    if not os.path.exists(os.path.join(testdir, 'RGI40-11.00897',
                                       'inversion_params.pkl')):
        reset = True

    # Init
    cfg.initialize()
    cfg.set_divides_db(get_demo_file('HEF_divided.shp'))
    cfg.PATHS['dem_file'] = get_demo_file('hef_srtm.tif')
    cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
    cfg.PARAMS['border'] = border

    # loop because for some reason indexing wont work
    hef_file = get_demo_file('Hintereisferner.shp')
    rgidf = gpd.GeoDataFrame.from_file(hef_file)
    for index, entity in rgidf.iterrows():
        gdir = oggm.GlacierDirectory(entity, base_dir=testdir, reset=reset)

    if not reset:
        return gdir

    gis.define_glacier_region(gdir, entity=entity)
    gis.glacier_masks(gdir)
    centerlines.compute_centerlines(gdir)
    centerlines.compute_downstream_lines(gdir)
    geometry.initialize_flowlines(gdir)
    geometry.catchment_area(gdir)
    geometry.catchment_width_geom(gdir)
    geometry.catchment_width_correction(gdir)
    climate.distribute_climate_data([gdir])
    climate.mu_candidates(gdir, div_id=0)
    hef_file = get_demo_file('mbdata_RGI40-11.00897.csv')
    mbdf = pd.read_csv(hef_file).set_index('YEAR')
    t_star, bias = climate.t_star_from_refmb(gdir, mbdf['ANNUAL_BALANCE'])
    climate.local_mustar_apparent_mb(gdir, tstar=t_star[-1], bias=bias[-1])

    inversion.prepare_for_inversion(gdir)
    ref_v = 0.573 * 1e9

    if invert_with_sliding:
        def to_optimize(x):
            # For backwards compat
            _fd = 1.9e-24 * x[0]
            glen_a = (cfg.N+2) * _fd / 2.
            fs = 5.7e-20 * x[1]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                                  glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1, 1],
                                    bounds=((0.01, 10), (0.01, 10)),
                                    tol=1e-4)['x']
        _fd = 1.9e-24 * out[0]
        glen_a = (cfg.N+2) * _fd / 2.
        fs = 5.7e-20 * out[1]
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)
    else:
        def to_optimize(x):
            glen_a = cfg.A * x[0]
            v, _ = inversion.invert_parabolic_bed(gdir, fs=0.,
                                                  glen_a=glen_a)
            return (v - ref_v)**2

        import scipy.optimize as optimization
        out = optimization.minimize(to_optimize, [1],
                                    bounds=((0.01, 10),),
                                    tol=1e-4)['x']
        glen_a = cfg.A * out[0]
        fs = 0.
        v, _ = inversion.invert_parabolic_bed(gdir, fs=fs,
                                              glen_a=glen_a,
                                              write=True)
    d = dict(fs=fs, glen_a=glen_a)
    d['factor_glen_a'] = out[0]
    try:
        d['factor_fs'] = out[1]
    except IndexError:
        d['factor_fs'] = 0.
    gdir.write_pickle(d, 'inversion_params')

    inversion.distribute_thickness(gdir, how='per_altitude',
                                   add_nc_name=True)
    inversion.distribute_thickness(gdir, how='per_interpolation',
                                   add_slope=False, smooth=False,
                                   add_nc_name=True)

    return gdir