コード例 #1
0
ファイル: test_vas.py プロジェクト: OGGM/oggm-vas
    def test_run_constant_climate(self):
        """ Test the run_constant_climate task for a climate based on the
        equilibrium period centred around t*. Additionally a positive and a
        negative temperature bias are tested.

        """
        # let's not use the mass balance bias since we want to reproduce
        # results from mass balance calibration
        cfg.PARAMS['use_bias_for_run'] = False

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI6.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)
        # compute mass balance parameters
        fn = 'vas_ref_tstars_rgi6_histalp.csv'
        fp = vascaling.get_ref_tstars_filepath(fn)
        ref_df = pd.read_csv(fp)
        vascaling.local_t_star(gdir, ref_df=ref_df)

        # define some parameters for the constant climate model
        nyears = 500
        temp_bias = 0.5
        _ = vascaling.run_constant_climate(gdir,
                                           nyears=nyears,
                                           output_filesuffix='')
        _ = vascaling.run_constant_climate(gdir,
                                           nyears=nyears,
                                           temperature_bias=+temp_bias,
                                           output_filesuffix='_bias_p')
        _ = vascaling.run_constant_climate(gdir,
                                           nyears=nyears,
                                           temperature_bias=-temp_bias,
                                           output_filesuffix='_bias_n')

        # compile run outputs
        ds = utils.compile_run_output([gdir], input_filesuffix='')
        ds_p = utils.compile_run_output([gdir], input_filesuffix='_bias_p')
        ds_n = utils.compile_run_output([gdir], input_filesuffix='_bias_n')

        # the glacier should not change under a constant climate
        # based on the equilibirum period centered around t*
        assert abs(1 - ds.volume.mean() / ds.volume[0]) < 1e-7
        # higher temperatures should result in a smaller glacier
        assert ds.volume.mean() > ds_p.volume.mean()
        # lower temperatures should result in a larger glacier
        assert ds.volume.mean() < ds_n.volume.mean()

        # compute volume change from one year to the next
        dV_p = (ds_p.volume[1:].values - ds_p.volume[:-1].values).flatten()
        dV_n = (ds_n.volume[1:].values - ds_n.volume[:-1].values).flatten()
        # compute relative volume change, with respect to the final volume
        rate_p = abs(dV_p / float(ds_p.volume.values[-1]))
        rate_n = abs(dV_n / float(ds_n.volume.values[-1]))
        # the glacier should be in a new equilibirum for last 300 years
        assert max(rate_p[-300:]) < 0.001
        assert max(rate_n[-300:]) < 0.001
コード例 #2
0
ファイル: test_vas.py プロジェクト: OGGM/oggm-vas
    def test_run_random_climate(self):
        """ Test the run_random_climate task for a climate based on the
        equilibrium period centred around t*. Additionally a positive and a
        negative temperature bias are tested.

        Returns
        -------

        """
        # let's not use the mass balance bias since we want to reproduce
        # results from mass balance calibration
        cfg.PARAMS['use_bias_for_run'] = False

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI6.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)
        # compute mass balance parameters
        fn = 'vas_ref_tstars_rgi6_histalp.csv'
        fp = vascaling.get_ref_tstars_filepath(fn)
        ref_df = pd.read_csv(fp)
        vascaling.local_t_star(gdir, ref_df=ref_df)

        # define some parameters for the random climate model
        nyears = 300
        seed = 1
        temp_bias = 0.5
        # read the equilibirum year used for the mass balance calibration
        t_star = gdir.read_json('vascaling_mustar')['t_star']
        # run model with random climate
        _ = vascaling.run_random_climate(gdir,
                                         nyears=nyears,
                                         y0=t_star,
                                         seed=seed)
        # run model with positive temperature bias
        _ = vascaling.run_random_climate(gdir,
                                         nyears=nyears,
                                         y0=t_star,
                                         seed=seed,
                                         temperature_bias=temp_bias,
                                         output_filesuffix='_bias_p')
        # run model with negative temperature bias
        _ = vascaling.run_random_climate(gdir,
                                         nyears=nyears,
                                         y0=t_star,
                                         seed=seed,
                                         temperature_bias=-temp_bias,
                                         output_filesuffix='_bias_n')

        # compile run outputs
        ds = utils.compile_run_output([gdir], input_filesuffix='')
        ds_p = utils.compile_run_output([gdir], input_filesuffix='_bias_p')
        ds_n = utils.compile_run_output([gdir], input_filesuffix='_bias_n')

        # the glacier should not change much under a random climate
        # based on the equilibirum period centered around t*
        assert abs(1 - ds.volume.mean() / ds.volume[0]) < 0.015
        # higher temperatures should result in a smaller glacier
        assert ds.volume.mean() > ds_p.volume.mean()
        # lower temperatures should result in a larger glacier
        assert ds.volume.mean() < ds_n.volume.mean()
コード例 #3
0
ファイル: test_vas.py プロジェクト: OGGM/oggm-vas
def test_get_ref_tstars_filepath():
    fp = vascaling.get_ref_tstars_filepath('vas_ref_tstars_rgi6_histalp.csv')
    assert os.path.exists(fp)
    with pytest.raises(ValueError):
        vascaling.get_ref_tstars_filepath('dummy.csv')
コード例 #4
0
ファイル: test_vas.py プロジェクト: OGGM/oggm-vas
    def test_local_t_star(self):

        # set parameters for climate file and mass balance calibration
        cfg.PARAMS['baseline_climate'] = 'CUSTOM'
        cfg.PATHS['climate_file'] = get_demo_file('histalp_merged_hef.nc')
        cfg.PARAMS['run_mb_calibration'] = False

        # read the Hintereisferner
        hef_file = get_demo_file('Hintereisferner_RGI6.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and the glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)
        # run centerline prepro tasks
        centerlines.compute_centerlines(gdir)
        centerlines.initialize_flowlines(gdir)
        centerlines.catchment_area(gdir)
        centerlines.catchment_intersections(gdir)
        centerlines.catchment_width_geom(gdir)
        centerlines.catchment_width_correction(gdir)
        # process the given climate file
        climate.process_custom_climate_data(gdir)

        # compute the reference t* for the glacier
        # given the reference of mass balance measurements
        res = vascaling.t_star_from_refmb(gdir)
        t_star, bias = res['t_star'], res['bias']
        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, tstar=t_star, bias=bias)
        # read calibration results
        vas_mustar_refmb = gdir.read_json('vascaling_mustar')

        # get reference t* list
        fn = 'vas_ref_tstars_rgi6_histalp.csv'
        fp = vascaling.get_ref_tstars_filepath(fn)
        ref_df = pd.read_csv(fp)

        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir, ref_df=ref_df)
        # read calibration results
        vas_mustar_refdf = gdir.read_json('vascaling_mustar')

        # compute local t* and the corresponding mu*
        vascaling.local_t_star(gdir)
        # read calibration results
        vas_mustar = gdir.read_json('vascaling_mustar')

        # compare with each other
        assert vas_mustar_refdf == vas_mustar
        # TODO: this test is currently failing, since the bias computed
        # via `t_start_from_refmb` does not align with the reference tstar list
        # np.testing.assert_allclose(vas_mustar_refmb['bias'],
        #                            vas_mustar_refdf['bias'], atol=1)
        vas_mustar_refdf.pop('bias')
        vas_mustar_refmb.pop('bias')
        # end of workaround
        assert vas_mustar_refdf == vas_mustar_refmb
        # compare with know values
        assert vas_mustar['t_star'] == 1885
        assert abs(vas_mustar['mu_star'] - 82.73) <= 0.1
        assert abs(vas_mustar['bias'] - -6.47) <= 0.1
コード例 #5
0
ファイル: test_vas.py プロジェクト: OGGM/oggm-vas
    def test_run_until_equilibrium(self):
        """
        Note: the oscillating behavior makes this test almost meaningless
        Returns
        -------

        """
        # let's not use the mass balance bias since we want to reproduce
        # results from mass balance calibration
        cfg.PARAMS['use_bias_for_run'] = False

        # read the Hintereisferner DEM
        hef_file = get_demo_file('Hintereisferner_RGI6.shp')
        entity = gpd.read_file(hef_file).iloc[0]

        # initialize the GlacierDirectory
        gdir = oggm.GlacierDirectory(entity, base_dir=self.testdir)
        # define the local grid and glacier mask
        gis.define_glacier_region(gdir, entity=entity)
        gis.glacier_masks(gdir)

        # process the given climate file
        climate.process_custom_climate_data(gdir)
        # compute mass balance parameters
        fn = 'vas_ref_tstars_rgi6_histalp.csv'
        fp = vascaling.get_ref_tstars_filepath(fn)
        ref_df = pd.read_csv(fp)
        vascaling.local_t_star(gdir, ref_df=ref_df)

        # instance a constant mass balance model, centred around t*
        mb_model = vascaling.ConstantVASMassBalance(gdir)
        # add a positive temperature bias
        mb_model.temp_bias = 0.5

        # create a VAS model: start with year 0  since we are using a constant
        # massbalance model, other values are read from RGI
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)
        model = vascaling.VAScalingModel(year_0=0,
                                         area_m2_0=gdir.rgi_area_m2,
                                         min_hgt=min_hgt,
                                         max_hgt=max_hgt,
                                         mb_model=mb_model)

        # run glacier with new mass balance model
        model.run_until_equilibrium(rate=1e-5)

        # equilibrium should be reached after a couple of 100 years
        assert model.year <= 600
        # new equilibrium glacier should be smaller (positive temperature bias)
        assert model.volume_m3 < model.volume_m3_0

        # run glacier for another 100 years and check volume again
        v_eq = model.volume_m3
        model.run_until(model.year + 100)
        assert abs(1 - (model.volume_m3 / v_eq)) < 0.01

        # instance a random mass balance model, centred around t*
        mb_model = vascaling.RandomVASMassBalance(gdir)
        min_hgt, max_hgt = vascaling.get_min_max_elevation(gdir)
        model = vascaling.VAScalingModel(year_0=0,
                                         area_m2_0=gdir.rgi_area_m2,
                                         min_hgt=min_hgt,
                                         max_hgt=max_hgt,
                                         mb_model=mb_model)

        # run glacier with random mass balance model
        with self.assertRaises(TypeError):
            model.run_until_equilibrium(rate=1e-4)