コード例 #1
0
ファイル: test_SS.py プロジェクト: sktpru/OG-India
def test_inner_loop():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'inner_loop_inputs.pkl'))
    (outer_loop_vars_in, params, baseline, baseline_spending) = input_tuple
    ss_params, income_tax_params, chi_params, small_open_params = params
    (bssmat, nssmat, r, Y, TR, factor) = outer_loop_vars_in
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.eta = (p.omega_SS.reshape(p.S, 1) *
             p.lambdas.reshape(1, p.J)).reshape(1, p.S, p.J)
    p.Z = np.ones(p.T + p.S) * Z
    p.zeta_D = np.zeros(p.T + p.S)
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1
    BQ = np.ones(p.J) * 0.00019646295986015257
    outer_loop_vars = (bssmat, nssmat, r, BQ, Y, TR, factor)
    (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
     new_w, new_TR, new_Y, new_factor, new_BQ,
     average_income_model) = SS.inner_loop(outer_loop_vars, p, None)
    test_tuple = (euler_errors, new_bmat, new_nmat, new_r, new_w,
                  new_TR, new_Y, new_factor, new_BQ,
                  average_income_model)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert(np.allclose(test_tuple[i], v, atol=1e-05))
コード例 #2
0
ファイル: test_TPI.py プロジェクト: sktpru/OG-India
def test_inner_loop():
    # Test TPI.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'tpi_inner_loop_inputs.pkl'))
    guesses, outer_loop_vars, params, j = input_tuple
    income_tax_params, tpi_params, initial_values, ind = params
    initial_values = initial_values
    tpi_params = tpi_params
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon, Z,
     p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau, tau_payroll,
     tau_bq, p.rho, p.omega, N_tilde, lambdas, p.imm_rates, p.e, retire,
     p.mean_income_data, factor, h_wealth, p_wealth, m_wealth, p.b_ellipse,
     p.upsilon, p.chi_b, p.chi_n, theta, p.baseline) = tpi_params
    p.eta = p.omega.reshape(p.T + p.S, p.S, 1) * p.lambdas.reshape(1, p.J)
    p.Z = np.ones(p.T + p.S) * Z
    p.zeta_D = np.zeros(p.T + p.S)
    p.initial_foreign_debt_ratio = 0.0
    p.initial_debt_ratio = 0.59
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.tax_func_type = 'DEP'
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n, p.omega_S_preTP,
     initial_debt, D0) = initial_values
    initial_values_in = (K0, b_sinit, b_splus1init, factor, initial_b,
                         initial_n, D0)
    (r, K, BQ, TR) = outer_loop_vars
    wss = firm.get_w_from_r(r[-1], p, 'SS')
    w = np.ones(p.T + p.S) * wss
    w[:p.T] = firm.get_w_from_r(r[:p.T], p, 'TPI')
    outer_loop_vars_in = (r, w, r, BQ, TR, theta)

    guesses = (guesses[0], guesses[1])
    test_tuple = TPI.inner_loop(guesses, outer_loop_vars_in, initial_values_in,
                                j, ind, p)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'tpi_inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert (np.allclose(test_tuple[i], v))
コード例 #3
0
ファイル: test_SS.py プロジェクト: pbpramanik/OG-India-1
def test_run_SS(input_path, expected_path):
    # Test SS.run_SS function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', input_path))
    (income_tax_params, ss_params, iterative_params, chi_params,
     small_open_params, baseline, baseline_spending, baseline_dir) =\
        input_tuple
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.eta = (p.omega_SS.reshape(p.S, 1) *
             p.lambdas.reshape(1, p.J)).reshape(1, p.S, p.J)
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.baseline_dir = baseline_dir
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.maxiter, p.mindist_SS = iterative_params
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1
    test_dict = SS.run_SS(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', expected_path))

    # delete values key-value pairs that are not in both dicts
    del expected_dict['bssmat'], expected_dict['chi_n'], expected_dict['chi_b']
    del expected_dict['Iss_total']
    del test_dict['etr_ss'], test_dict['mtrx_ss'], test_dict['mtry_ss']
    test_dict['IITpayroll_revenue'] = (test_dict['total_revenue_ss'] -
                                       test_dict['business_revenue'])
    del test_dict['T_Pss'], test_dict['T_BQss'], test_dict['T_Wss']
    del test_dict['resource_constraint_error'], test_dict['T_Css']
    del test_dict['r_gov_ss'], test_dict['r_hh_ss']
    del test_dict['K_d_ss'], test_dict['K_f_ss'], test_dict['D_d_ss']
    del test_dict['D_f_ss'], test_dict['I_d_ss'], test_dict['Iss_total']
    del test_dict['debt_service_f'], test_dict['new_borrowing_f']
    test_dict['revenue_ss'] = test_dict.pop('total_revenue_ss')
    test_dict['T_Hss'] = test_dict.pop('TR_ss')

    for k, v in expected_dict.items():
        assert(np.allclose(test_dict[k], v))
コード例 #4
0
ファイル: test_SS.py プロジェクト: pbpramanik/OG-India-1
def test_euler_equation_solver():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'euler_eqn_solver_inputs.pkl'))
    (guesses, params) = input_tuple
    p = Specifications()
    (r, w, TR, factor, j, p.J, p.S, p.beta, p.sigma, p.ltilde, p.g_y,
     p.g_n_ss, tau_payroll, retire, p.mean_income_data, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, j, p.chi_b,
     p.chi_n, tau_bq, p.rho, lambdas, p.omega_SS, p.e,
     p.analytical_mtrs, etr_params, mtrx_params, mtry_params) = params
    p.eta = (p.omega_SS.reshape(p.S, 1) *
             p.lambdas.reshape(1, p.J)).reshape(1, p.S, p.J)
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.tax_func_type = 'DEP'
    p.lambdas = lambdas.reshape(p.J, 1)
    b_splus1 = np.array(guesses[:p.S]).reshape(p.S, 1) + 0.005
    BQ = aggregates.get_BQ(r, b_splus1, j, p, 'SS', False)
    bq = household.get_bq(BQ, j, p, 'SS')
    tr = household.get_tr(TR, j, p, 'SS')
    args = (r, w, bq, tr, factor, j, p)
    test_list = SS.euler_equation_solver(guesses, *args)

    expected_list = np.array([
        -3.62741663e+00, -6.30068841e+00, -6.76592886e+00,
        -6.97731223e+00, -7.05777777e+00, -6.57305440e+00,
        -7.11553046e+00, -7.30569622e+00, -7.45808107e+00,
        -7.89984062e+00, -8.11466111e+00, -8.28230086e+00,
        -8.79253862e+00, -8.86994311e+00, -9.31299476e+00,
        -9.80834199e+00, -9.97333771e+00, -1.08349979e+01,
        -1.13199826e+01, -1.22890930e+01, -1.31550471e+01,
        -1.42753713e+01, -1.55721098e+01, -1.73811490e+01,
        -1.88856303e+01, -2.09570569e+01, -2.30559500e+01,
        -2.52127149e+01, -2.76119605e+01, -3.03141128e+01,
        -3.30900203e+01, -3.62799730e+01, -3.91169706e+01,
        -4.24246421e+01, -4.55740527e+01, -4.92914871e+01,
        -5.30682805e+01, -5.70043846e+01, -6.06075991e+01,
        -6.45251018e+01, -6.86128365e+01, -7.35896515e+01,
        -7.92634608e+01, -8.34733231e+01, -9.29802390e+01,
        -1.01179788e+02, -1.10437881e+02, -1.20569527e+02,
        -1.31569973e+02, -1.43633399e+02, -1.57534056e+02,
        -1.73244610e+02, -1.90066728e+02, -2.07980863e+02,
        -2.27589046e+02, -2.50241670e+02, -2.76314755e+02,
        -3.04930986e+02, -3.36196973e+02, -3.70907934e+02,
        -4.10966644e+02, -4.56684022e+02, -5.06945218e+02,
        -5.61838645e+02, -6.22617808e+02, -6.90840503e+02,
        -7.67825713e+02, -8.54436805e+02, -9.51106365e+02,
        -1.05780305e+03, -1.17435473e+03, -1.30045062e+03,
        -1.43571221e+03, -1.57971603e+03, -1.73204264e+03,
        -1.88430524e+03, -2.03403679e+03, -2.17861987e+03,
        -2.31532884e+03, -8.00654731e+03, -5.21487172e-02,
        -2.80234170e-01, 4.93894552e-01, 3.11884938e-01, 6.55799607e-01,
        5.62182419e-01,  3.86074983e-01,  3.43741491e-01,  4.22461089e-01,
        3.63707951e-01,  4.93150010e-01,  4.72813688e-01,  4.07390308e-01,
        4.94974186e-01,  4.69900128e-01,  4.37562389e-01,  5.67370182e-01,
        4.88965362e-01,  6.40728461e-01,  6.14619979e-01,  4.97173823e-01,
        6.19549666e-01,  6.51193557e-01,  4.48906118e-01,  7.93091492e-01,
        6.51249363e-01,  6.56307713e-01,  1.12948552e+00,  9.50018058e-01,
        6.79613030e-01,  9.51359123e-01,  6.31059147e-01,  7.97896887e-01,
        8.44620817e-01,  7.43683837e-01,  1.56693187e+00,  2.75630011e-01,
        5.32956891e-01,  1.57110727e+00,  1.22674610e+00, 4.63932928e-01,
        1.47225464e+00,  1.16948107e+00,  1.07965795e+00, -3.20557791e-01,
        -1.17064127e+00, -7.84880649e-01, -7.60851182e-01, -1.61415945e+00,
        -8.30363975e-01, -1.68459409e+00, -1.49260581e+00, -1.84257084e+00,
        -1.72143079e+00, -1.43131579e+00, -1.63719219e+00, -1.43874851e+00,
        -1.57207905e+00, -1.72909159e+00, -1.98778122e+00, -1.80843826e+00,
        -2.12828312e+00, -2.24768762e+00, -2.36961877e+00, -2.49117258e+00,
        -2.59914065e+00, -2.82309085e+00, -2.93613362e+00, -3.34446991e+00,
        -3.45445086e+00, -3.74962140e+00, -3.78113417e+00, -4.55643800e+00,
        -4.86929016e+00, -5.08657898e+00, -5.22054177e+00, -5.54606515e+00,
        -5.78478304e+00, -5.93652041e+00, -6.11519786e+00])

    assert(np.allclose(np.array(test_list), np.array(expected_list)))
コード例 #5
0
ファイル: test_SS.py プロジェクト: pbpramanik/OG-India-1
CUR_PATH = os.path.abspath(os.path.dirname(__file__))

input_tuple = utils.safe_read_pickle(
    os.path.join(CUR_PATH, 'test_io_data', 'SS_fsolve_inputs.pkl'))
guesses_in, params = input_tuple
params = params + (None, 1)
(bssmat, nssmat, chi_params, ss_params, income_tax_params,
 iterative_params, small_open_params, client, num_workers) = params
p1 = Specifications()
(p1.J, p1.S, p1.T, p1.BW, p1.beta, p1.sigma, p1.alpha, p1.gamma, p1.epsilon,
 Z, p1.delta, p1.ltilde, p1.nu, p1.g_y, p1.g_n_ss, tau_payroll,
 tau_bq, p1.rho, p1.omega_SS, p1.budget_balance, alpha_T,
 p1.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p1.e,
 retire, p1.mean_income_data, h_wealth, p_wealth, m_wealth,
 p1.b_ellipse, p1.upsilon) = ss_params
p1.eta = (p1.omega_SS.reshape(p1.S, 1) *
          p1.lambdas.reshape(1, p1.J)).reshape(1, p1.S, p1.J)
p1.Z = np.ones(p1.T + p1.S) * Z
p1.tau_bq = np.ones(p1.T + p1.S) * 0.0
p1.tau_payroll = np.ones(p1.T + p1.S) * tau_payroll
p1.alpha_T = np.ones(p1.T + p1.S) * alpha_T
p1.tau_b = np.ones(p1.T + p1.S) * tau_b
p1.delta_tau = np.ones(p1.T + p1.S) * delta_tau
p1.h_wealth = np.ones(p1.T + p1.S) * h_wealth
p1.p_wealth = np.ones(p1.T + p1.S) * p_wealth
p1.m_wealth = np.ones(p1.T + p1.S) * m_wealth
p1.retire = (np.ones(p1.T + p1.S) * retire).astype(int)
p1.lambdas = lambdas.reshape(p1.J, 1)
p1.imm_rates = imm_rates.reshape(1, p1.S)
p1.tax_func_type = 'DEP'
p1.baseline = True
p1.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
コード例 #6
0
ファイル: test_TPI.py プロジェクト: sktpru/OG-India
def test_run_TPI():
    # Test TPI.run_TPI function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'run_TPI_inputs.pkl'))
    (income_tax_params, tpi_params, iterative_params, small_open_params,
     initial_values, SS_values, fiscal_params, biz_tax_params, output_dir,
     baseline_spending) = input_tuple
    tpi_params = tpi_params + [True]
    initial_values = initial_values + (0.0, )

    p = Specifications()
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon, Z, p.delta,
     p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau, tau_payroll, tau_bq,
     p.rho, p.omega, N_tilde, lambdas, p.imm_rates, p.e, retire,
     p.mean_income_data, factor, h_wealth, p_wealth, m_wealth, p.b_ellipse,
     p.upsilon, p.chi_b, p.chi_n, theta, p.baseline) = tpi_params

    new_param_values = {
        'J': J,
        'S': S,
        'T': T,
        'eta': (np.ones((S, J)) / (S * J))
    }
    # update parameters instance with new values for test
    p.update_specifications(new_param_values, raise_errors=False)
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon, Z, p.delta,
     p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau, tau_payroll, tau_bq,
     p.rho, p.omega, N_tilde, lambdas, p.imm_rates, p.e, retire,
     p.mean_income_data, factor, h_wealth, p_wealth, m_wealth, p.b_ellipse,
     p.upsilon, p.chi_b, p.chi_n, theta, p.baseline) = tpi_params
    p.omega_SS = p.omega[-1, :]
    p.eta = p.omega.reshape(T + S, S, 1) * lambdas.reshape(1, J)
    p.Z = np.ones(p.T + p.S) * Z
    p.zeta_D = np.zeros(p.T + p.S)
    p.initial_foreign_debt_ratio = 0.0
    p.initial_debt_ratio = 0.59
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.small_open, ss_firm_r, ss_hh_r = small_open_params
    p.ss_firm_r = np.ones(p.T + p.S) * ss_firm_r
    p.ss_hh_r = np.ones(p.T + p.S) * ss_hh_r
    p.maxiter, p.mindist_SS, p.mindist_TPI = iterative_params
    (p.budget_balance, alpha_T, alpha_G, p.tG1, p.tG2, p.rho_G,
     p.debt_ratio_ss) = fiscal_params
    p.alpha_T = np.concatenate((alpha_T, np.ones(40) * alpha_T[-1]))
    p.alpha_G = np.concatenate((alpha_G, np.ones(40) * alpha_G[-1]))
    (tau_b, delta_tau) = biz_tax_params
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.output = output_dir
    p.baseline_spending = baseline_spending
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n, p.omega_S_preTP,
     initial_debt, D0) = initial_values

    # Need to run SS first to get results
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    test_dict = TPI.run_TPI(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', 'run_TPI_outputs.pkl'))

    # delete values key-value pairs that are not in both dicts
    del expected_dict['I_total']
    del test_dict['etr_path'], test_dict['mtrx_path'], test_dict['mtry_path']
    del test_dict['bmat_s']
    test_dict['b_mat'] = test_dict.pop('bmat_splus1')
    test_dict['REVENUE'] = test_dict.pop('total_revenue')
    test_dict['T_H'] = test_dict.pop('TR')
    test_dict['IITpayroll_revenue'] = (test_dict['REVENUE'][:160] -
                                       test_dict['business_revenue'])
    del test_dict['T_P'], test_dict['T_BQ'], test_dict['T_W']
    del test_dict['y_before_tax_mat'], test_dict['K_f'], test_dict['K_d']
    del test_dict['D_d'], test_dict['D_f']
    del test_dict['new_borrowing_f'], test_dict['debt_service_f']
    del test_dict['resource_constraint_error'], test_dict['T_C']
    del test_dict['r_gov'], test_dict['r_hh'], test_dict['tr_path']

    for k, v in expected_dict.items():
        try:
            assert (np.allclose(test_dict[k], v, rtol=1e-04, atol=1e-04))
        except ValueError:
            assert (np.allclose(test_dict[k],
                                v[:p.T, :, :],
                                rtol=1e-04,
                                atol=1e-04))
コード例 #7
0
                             'TPI, use zeta, all j', 'TPI, use zeta, one j',
                             'SS, not use zeta, all j',
                             'SS, not use zeta, one j',
                             'TPI, not use zeta, all j',
                             'TPI, not use zeta, one j'
                         ])
def test_get_bq(BQ, j, p, method, expected):
    # Test the get_bq function
    test_value = household.get_bq(BQ, j, p, method)
    print('Test value = ', test_value)
    assert np.allclose(test_value, expected)


p1 = Specifications()
p1.eta = np.tile(
    np.array([[0.1, 0.3], [0.15, 0.4], [0.05, 0.0]]).reshape(1, p2.S, p2.J),
    (p2.T, 1, 1))
p1.S = 3
p1.J = 2
p1.T = 3
p1.lambdas = np.array([0.6, 0.4])
p1.omega_SS = np.array([0.25, 0.25, 0.5])
p1.omega = np.tile(p1.omega_SS.reshape((1, p1.S)), (p1.T, 1))
TR1 = 2.5
expected1 = np.array([[1.66666667, 7.5], [2.5, 10.0], [0.416666667, 0.0]])
p2 = Specifications()
p2.S = 3
p2.J = 2
p2.T = 3
p2.eta = np.tile(
    np.array([[0.1, 0.3], [0.15, 0.4], [0.05, 0.0]]).reshape(1, p2.S, p2.J),