コード例 #1
0
    def runner(self):
        '''
        Method to run the model
        '''
        # baseline compute
        self.base_ss_outputs = SS.run_SS(self.spec1)
        if self.spec1.time_path:
            self.base_tpi_output = TPI.run_TPI(self.spec1)
        # reform compute
        # a bit more complicated because will need stuff from baseline

        self.reform_ss_outputs = SS.run_SS(self.spec2)
        if self.spec2.time_path:
            self.reform_tpi_output = TPI.run_TPI(self.spec2)
コード例 #2
0
def minstat(beta_guesses, *args):
    '''
    This function generates the weighted sum of squared differences
    between the model and data moments.

    Args:
    beta_guesses (array-like): a vector of length J with the betas
    args (tuple): length 6 tuple, variables needed for minimizer

    Returns:
    distance (scalar): weighted, squared deviation between data and
        model moments

    '''
    # unpack args tuple
    data_moments, W, p, client = args

    # Update beta in parameters object with beta guesses
    p.beta = beta_guesses

    # Solve model SS
    print('Baseline = ', p.baseline)
    ss_output = SS.run_SS(p, client=client)

    # Compute moments from model SS
    model_moments = calc_moments(ss_output, p)

    # distance with levels
    distance = np.dot(
        np.dot((np.array(model_moments) - np.array(data_moments)).T, W),
        np.array(model_moments) - np.array(data_moments))

    print('DATA and MODEL DISTANCE: ', distance)

    return distance
コード例 #3
0
def find_moments(p, client):
    b_guess = np.ones((p.S, p.J)) * 0.07
    n_guess = np.ones((p.S, p.J)) * .4 * p.ltilde
    rguess = 0.08961277823002804 # 0.09
    T_Hguess = 0.12
    factorguess = 12.73047710050195 # 7.7 #70000 # Modified
    BQguess = aggr.get_BQ(rguess, b_guess, None, p, 'SS', False)
    exit_early = [0, -1] # 2nd value gives number of valid labor moments to consider before exiting SS_fsolve
                         # Put -1 to run to SS
    ss_params_baseline = (b_guess, n_guess, None, None, p, client, exit_early)
    guesses = [rguess] + list(BQguess) + [T_Hguess, factorguess]
    [solutions_fsolve, infodict, ier, message] =\
            opt.fsolve(SS.SS_fsolve, guesses, args=ss_params_baseline,
                       xtol=p.mindist_SS, full_output=True)
    rss = solutions_fsolve[0]
    BQss = solutions_fsolve[1:-2]
    T_Hss = solutions_fsolve[-2]
    factor_ss = solutions_fsolve[-1]
    Yss = T_Hss/p.alpha_T[-1]
    fsolve_flag = True
    try:
        output = SS.SS_solver(b_guess, n_guess, rss, BQss, T_Hss,
                        factor_ss, Yss, p, client, fsolve_flag)
    except:
        print('RuntimeError: Steady state aggregate resource constraint not satisfied')
        print('Luckily we caught the error, so minstat_init_calibrate will continue')
        return 1e10

    model_moments = np.array(output['nssmat'].mean(axis=1)[:45]) # calc_moments(output, p.omega_SS, p.lambdas, p.S, p.J)

    return model_moments
コード例 #4
0
def test_run_SS(input_path, expected_path):
    # Test SS.run_SS function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', input_path))
    (income_tax_params, ss_params, iterative_params, chi_params,
     small_open_params, baseline, baseline_spending, baseline_dir) =\
        input_tuple
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon, Z,
     p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll, tau_bq, p.rho,
     p.omega_SS, p.budget_balance, alpha_T, p.debt_ratio_ss, tau_b, delta_tau,
     lambdas, imm_rates, p.e, retire, p.mean_income_data, h_wealth, p_wealth,
     m_wealth, p.b_ellipse, p.upsilon) = ss_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.baseline_dir = baseline_dir
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(
        etr_params.reshape(p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(
        mtrx_params.reshape(p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(
        mtry_params.reshape(p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.maxiter, p.mindist_SS = iterative_params
    p.chi_b, p.chi_n = chi_params
    p.small_open, ss_firm_r, ss_hh_r = small_open_params
    p.ss_firm_r = np.ones(p.T + p.S) * ss_firm_r
    p.ss_hh_r = np.ones(p.T + p.S) * ss_hh_r
    p.num_workers = 1
    test_dict = SS.run_SS(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', expected_path))

    # delete values key-value pairs that are not in both dicts
    del expected_dict['bssmat'], expected_dict['chi_n'], expected_dict['chi_b']
    del test_dict['etr_ss'], test_dict['mtrx_ss'], test_dict['mtry_ss']
    test_dict['IITpayroll_revenue'] = (test_dict['total_revenue_ss'] -
                                       test_dict['business_revenue'])
    del test_dict['T_Pss'], test_dict['T_BQss'], test_dict['T_Wss']
    del test_dict['resource_constraint_error'], test_dict['T_Css']
    test_dict['revenue_ss'] = test_dict.pop('total_revenue_ss')

    for k, v in expected_dict.items():
        assert (np.allclose(test_dict[k], v))
コード例 #5
0
def test_SS_solver(baseline, param_updates, filename, dask_client):
    # Test SS.SS_solver function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    p = Specifications(baseline=baseline,
                       client=dask_client,
                       num_workers=NUM_WORKERS)
    p.update_specifications(param_updates)
    p.output_base = CUR_PATH
    p.get_tax_function_parameters(None, run_micro=False)
    b_guess = np.ones((p.S, p.J)) * 0.07
    n_guess = np.ones((p.S, p.J)) * .35 * p.ltilde
    if p.zeta_K[-1] == 1.0:
        rguess = p.world_int_rate[-1]
    else:
        rguess = 0.06483431412921253
    TRguess = 0.05738932081035772
    factorguess = 139355.1547340256
    BQguess = aggregates.get_BQ(rguess, b_guess, None, p, 'SS', False)
    Yguess = 0.6376591201150815

    test_dict = SS.SS_solver(b_guess, n_guess, rguess, BQguess, TRguess,
                             factorguess, Yguess, p, None, False)
    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', filename))

    for k, v in expected_dict.items():
        print('Testing ', k)
        assert (np.allclose(test_dict[k], v, atol=1e-07, equal_nan=True))
コード例 #6
0
def test_run_SS(baseline, param_updates, filename, dask_client):
    # Test SS.run_SS function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    if baseline is False:
        tax_func_path_baseline = os.path.join(CUR_PATH,
                                              'TxFuncEst_baseline.pkl')
        tax_func_path = os.path.join(CUR_PATH, 'TxFuncEst_policy.pkl')
        execute.runner(constants.BASELINE_DIR,
                       constants.BASELINE_DIR,
                       time_path=False,
                       baseline=True,
                       og_spec=param_updates,
                       run_micro=False,
                       tax_func_path=tax_func_path_baseline)
    else:
        tax_func_path = os.path.join(CUR_PATH, 'TxFuncEst_baseline.pkl')
    p = Specifications(baseline=baseline,
                       client=dask_client,
                       num_workers=NUM_WORKERS)
    p.update_specifications(param_updates)
    p.get_tax_function_parameters(None,
                                  run_micro=False,
                                  tax_func_path=tax_func_path)
    test_dict = SS.run_SS(p, None)
    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', filename))

    for k, v in expected_dict.items():
        assert (np.allclose(test_dict[k], v))
コード例 #7
0
def test_SS_fsolve(guesses, args, expected):
    '''
    Test SS.SS_fsolve function.  Provide inputs to function and
    ensure that output returned matches what it has been before.
    '''
    test_list = SS.SS_fsolve(guesses, *args)
    assert (np.allclose(np.array(test_list), np.array(expected), atol=1e-6))
コード例 #8
0
def test_inner_loop(baseline, param_updates, filename, dask_client):
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    p = Specifications(baseline=baseline,
                       client=dask_client,
                       num_workers=NUM_WORKERS)
    p.update_specifications(param_updates)
    p.output_base = CUR_PATH
    p.get_tax_function_parameters(None, run_micro=False)
    bssmat = np.ones((p.S, p.J)) * 0.07
    nssmat = np.ones((p.S, p.J)) * .4 * p.ltilde
    if p.zeta_K[-1] == 1.0:
        r = p.world_int_rate[-1]
    else:
        r = 0.05
    TR = 0.12
    Y = 1.3
    factor = 100000
    BQ = np.ones(p.J) * 0.00019646295986015257
    if p.budget_balance:
        outer_loop_vars = (bssmat, nssmat, r, BQ, TR, factor)
    else:
        outer_loop_vars = (bssmat, nssmat, r, BQ, Y, TR, factor)
    test_tuple = SS.inner_loop(outer_loop_vars, p, None)
    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', filename))
    for i, v in enumerate(expected_tuple):
        assert (np.allclose(test_tuple[i], v, atol=1e-05))
コード例 #9
0
def minstat_init_calibrate(params, *args):
    a0, a1, a2, a3, a4 = params
    p, client, data_moments, W, ages = args
    chi_n = np.ones(p.S)
    chi_n[:p.S // 2 + 5] = chebyshev_func(ages, a0, a1, a2, a3, a4)
    slope = chi_n[p.S // 2 + 5 - 1] - chi_n[p.S // 2 + 5 - 2]
    chi_n[p.S // 2 + 5 -
          1:] = (np.linspace(65, 100, 36) - 65) * slope + chi_n[p.S // 2 + 5 -
                                                                1]
    chi_n[chi_n < 0.5] = 0.5

    p.chi_n = chi_n

    print("-----------------------------------------------------")
    print('PARAMS AT START' + str(params))
    print("-----------------------------------------------------")
    b_guess = np.ones((p.S, p.J)) * 0.07
    n_guess = np.ones((p.S, p.J)) * .4 * p.ltilde
    rguess = 0.09
    T_Hguess = 0.12
    factorguess = 7.7  #70000 # Modified
    BQguess = aggr.get_BQ(rguess, b_guess, None, p, 'SS', False)
    exit_early = [
        0, 2
    ]  # 2nd value gives number of valid labor moments to consider before exiting SS_fsolve
    ss_params_baseline = (b_guess, n_guess, None, None, p, client, exit_early)
    guesses = [rguess] + list(BQguess) + [T_Hguess, factorguess]
    [solutions_fsolve, infodict, ier, message] =\
            opt.fsolve(SS.SS_fsolve, guesses, args=ss_params_baseline,
                       xtol=p.mindist_SS, full_output=True)
    rss = solutions_fsolve[0]
    BQss = solutions_fsolve[1:-2]
    T_Hss = solutions_fsolve[-2]
    factor_ss = solutions_fsolve[-1]
    Yss = T_Hss / p.alpha_T[-1]
    fsolve_flag = True
    try:
        output = SS.SS_solver(b_guess, n_guess, rss, BQss, T_Hss, factor_ss,
                              Yss, p, client, fsolve_flag)
    except:
        print(
            'RuntimeError: Steady state aggregate resource constraint not satisfied'
        )
        print(
            'Luckily we caught the error, so minstat_init_calibrate will continue'
        )
        return 1e10

    model_moments = calc_moments(output, p.omega_SS, p.lambdas, p.S, p.J)

    print('Model moments:', model_moments)
    print("-----------------------------------------------------")
    distance = np.dot(
        np.dot((np.array(model_moments[:9]) - np.array(data_moments)).T, W),
        np.array(model_moments[:9]) - np.array(data_moments))
    print('DATA and MODEL DISTANCE: ', distance)

    return distance
コード例 #10
0
ファイル: test_SS.py プロジェクト: rickecon/OG-USA
def test_inner_loop():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_inputs.pkl'))
    (outer_loop_vars_in, params, baseline, baseline_spending) = input_tuple
    ss_params, income_tax_params, chi_params, small_open_params = params
    (bssmat, nssmat, r, Y, T_H, factor) = outer_loop_vars_in
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1
    BQ = np.ones(p.J) * 0.00019646295986015257
    outer_loop_vars = (bssmat, nssmat, r, BQ, Y, T_H, factor)
    (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
     new_w, new_T_H, new_Y, new_factor, new_BQ,
     average_income_model) = SS.inner_loop(outer_loop_vars, p, None)
    test_tuple = (euler_errors, new_bmat, new_nmat, new_r, new_w,
                  new_T_H, new_Y, new_factor, new_BQ,
                  average_income_model)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert(np.allclose(test_tuple[i], v, atol=1e-05))
コード例 #11
0
ファイル: test_SS.py プロジェクト: githubxinwen/OG-JPN
def test_inner_loop():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_inputs.pkl'))
    (outer_loop_vars_in, params, baseline, baseline_spending) = input_tuple
    ss_params, income_tax_params, chi_params, small_open_params = params
    (bssmat, nssmat, r, Y, T_H, factor) = outer_loop_vars_in
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1
    BQ = np.ones(p.J) * 0.00019646295986015257
    outer_loop_vars = (bssmat, nssmat, r, BQ, Y, T_H, factor)
    (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
     new_w, new_T_H, new_Y, new_factor, new_BQ,
     average_income_model) = SS.inner_loop(outer_loop_vars, p, None)
    test_tuple = (euler_errors, new_bmat, new_nmat, new_r, new_w,
                  new_T_H, new_Y, new_factor, new_BQ,
                  average_income_model)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert(np.allclose(test_tuple[i], v, atol=1e-05))
コード例 #12
0
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = "./OUTPUT"
    baseline_dir = "./OUTPUT"
    user_params = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2
    }
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=False,
                          time_path=True,
                          baseline=True,
                          reform={},
                          guid='')
    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Save pickle with parameter values for the run
    param_dir = os.path.join(baseline_dir, "model_params.pkl")
    pickle.dump(spec, open(param_dir, "wb"))
    tpi_output = TPI.run_TPI(spec, None)
    print(
        'Max diff btwn SS and TP bsplus1 = ',
        np.absolute(tpi_output['bmat_splus1'][:spec.T, :, :] -
                    ss_outputs['bssmat_splus1']).max())
    print('Max diff btwn SS and TP Y = ',
          np.absolute(tpi_output['Y'][:spec.T] - ss_outputs['Yss']).max())
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
コード例 #13
0
def test_run_TPI(baseline, param_updates, filename, tmp_path, dask_client):
    '''
    Test TPI.run_TPI function.  Provide inputs to function and
    ensure that output returned matches what it has been before.
    '''
    baseline_dir = os.path.join(CUR_PATH, 'baseline')
    if baseline:
        output_base = baseline_dir
    else:
        output_base = os.path.join(CUR_PATH, 'reform')
    p = Specifications(baseline=baseline,
                       baseline_dir=baseline_dir,
                       output_base=output_base,
                       test=True,
                       client=dask_client,
                       num_workers=NUM_WORKERS)
    p.update_specifications(param_updates)
    p.maxiter = 2  # this test runs through just two iterations
    p.get_tax_function_parameters(None,
                                  run_micro=False,
                                  tax_func_path=os.path.join(
                                      CUR_PATH, '..', 'data', 'tax_functions',
                                      'TxFuncEst_baseline_CPS.pkl'))

    # Need to run SS first to get results
    SS.ENFORCE_SOLUTION_CHECKS = False
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS", "SS_vars.pkl")
        with open(ss_dir, "wb") as f:
            pickle.dump(ss_outputs, f)

    TPI.ENFORCE_SOLUTION_CHECKS = False
    test_dict = TPI.run_TPI(p, None)
    expected_dict = utils.safe_read_pickle(filename)

    for k, v in expected_dict.items():
        try:
            assert (np.allclose(test_dict[k][:p.T],
                                v[:p.T],
                                rtol=1e-04,
                                atol=1e-04))
        except ValueError:
            assert (np.allclose(test_dict[k][:p.T, :, :],
                                v[:p.T, :, :],
                                rtol=1e-04,
                                atol=1e-04))
コード例 #14
0
def compute_se(beta_hat, W, K, p, h=0.01, client=None):
    """
    Function to compute standard errors for the SMM estimator.

    Args:
        beta_hat (array-like): estimates of beta parameters
        W (Numpy array): weighting matrix
        K (int): number of moments
        p (OG-USA Specifications object): model parameters
        h (scalar): percentage to move parameters for numerical derivatives
        client (Dask Client object): Dask client

    Returns:
        beta_se (array-like): standard errors for beta estimates
        VCV_params (Numpy array): VCV matrix for parameter estimates

    """
    # compute numerical derivatives that will need for SE's
    model_moments_low = np.zeros((p.J, K))
    model_moments_high = np.zeros((p.J, K))
    beta_low = beta_hat
    beta_high = beta_hat
    for i in range(len(beta_hat)):
        # compute moments with downward change in param
        beta_low[i] = beta_hat[i] * (1 + h)
        p.beta = beta_low
        ss_output = ss_output = SS.run_SS(p, client=client)
        model_moments_low[i, :] = calc_moments(ss_output, p)
        # compute moments with upward change in param
        beta_high[i] = beta_hat[i] * (1 - h)
        p.beta = beta_low
        ss_output = ss_output = SS.run_SS(p, client=client)
        model_moments_high[i, :] = calc_moments(ss_output, p)

    deriv_moments = (model_moments_high - model_moments_low).T / (2 * h *
                                                                  beta_hat)
    VCV_params = np.linalg.inv(
        np.dot(np.dot(deriv_moments.T, W), deriv_moments))
    beta_se = (np.diag(VCV_params))**(1 / 2)

    return beta_se, VCV_params
コード例 #15
0
def test_constant_demographics_TPI(dask_client):
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    # Create output directory structure
    spec = Specifications(run_micro=False,
                          output_base=OUTPUT_DIR,
                          baseline_dir=OUTPUT_DIR,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='',
                          client=dask_client,
                          num_workers=NUM_WORKERS)
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'r_gov_shift': 0.0,
        'zeta_D': [0.0, 0.0],
        'zeta_K': [0.0, 0.0],
        'debt_ratio_ss': 1.0,
        'initial_foreign_debt_ratio': 0.0,
        'start_year': 2019,
        'cit_rate': [0.0],
        'PIA_rate_bkt_1': 0.0,
        'PIA_rate_bkt_2': 0.0,
        'PIA_rate_bkt_3': 0.0,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False, tax_func_path=TAX_FUNC_PATH)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(OUTPUT_DIR, "SS"))
    ss_dir = os.path.join(OUTPUT_DIR, "SS", "SS_vars.pkl")
    with open(ss_dir, "wb") as f:
        pickle.dump(ss_outputs, f)
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
コード例 #16
0
ファイル: test_basic.py プロジェクト: rickecon/OG-USA
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = "./OUTPUT"
    baseline_dir = "./OUTPUT"
    user_params = {'constant_demographics': True,
                   'budget_balance': True,
                   'zero_taxes': True,
                   'maxiter': 2}
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass
    spec = Specifications(run_micro=False, output_base=output_base,
                          baseline_dir=baseline_dir, test=False,
                          time_path=True, baseline=True, reform={},
                          guid='')
    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Save pickle with parameter values for the run
    param_dir = os.path.join(baseline_dir, "model_params.pkl")
    pickle.dump(spec, open(param_dir, "wb"))
    tpi_output = TPI.run_TPI(spec, None)
    print('Max diff btwn SS and TP bsplus1 = ',
          np.absolute(tpi_output['bmat_splus1'][:spec.T, :, :] -
                      ss_outputs['bssmat_splus1']).max())
    print('Max diff btwn SS and TP Y = ',
          np.absolute(tpi_output['Y'][:spec.T] -
                      ss_outputs['Yss']).max())
    assert(np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                       ss_outputs['bssmat_splus1']))
コード例 #17
0
ファイル: test_basic.py プロジェクト: FrancoCalle/OG-USA
def test_constant_demographics_TPI():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time.
    In this case, given how initial guesss for the time
    path are made, the time path should be solved for on the first
    iteration and the values all along the time path should equal their
    steady-state values.
    '''
    output_base = os.path.join(CUR_PATH, 'OUTPUT')
    baseline_dir = output_base
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='')
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(baseline_dir, "SS"))
    ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
    pickle.dump(ss_outputs, open(ss_dir, "wb"))
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
コード例 #18
0
def test_constant_demographics_TPI_small_open():
    '''
    This tests solves the model under the assumption of constant
    demographics, a balanced budget, and tax functions that do not vary
    over time, as well as with a small open economy assumption.
    '''
    # Create output directory structure
    spec = Specifications(run_micro=False,
                          output_base=OUTPUT_DIR,
                          baseline_dir=OUTPUT_DIR,
                          test=False,
                          time_path=True,
                          baseline=True,
                          iit_reform={},
                          guid='')
    og_spec = {
        'constant_demographics': True,
        'budget_balance': True,
        'zero_taxes': True,
        'maxiter': 2,
        'r_gov_shift': 0.0,
        'zeta_D': [0.0, 0.0],
        'zeta_K': [1.0],
        'debt_ratio_ss': 1.0,
        'initial_foreign_debt_ratio': 0.0,
        'start_year': 2019,
        'cit_rate': [0.0],
        'PIA_rate_bkt_1': 0.0,
        'PIA_rate_bkt_2': 0.0,
        'PIA_rate_bkt_3': 0.0,
        'eta':
        (spec.omega_SS.reshape(spec.S, 1) * spec.lambdas.reshape(1, spec.J))
    }
    spec.update_specifications(og_spec)
    spec.get_tax_function_parameters(None, False, tax_func_path=TAX_FUNC_PATH)
    # Run SS
    ss_outputs = SS.run_SS(spec, None)
    # save SS results
    utils.mkdirs(os.path.join(OUTPUT_DIR, "SS"))
    ss_dir = os.path.join(OUTPUT_DIR, "SS", "SS_vars.pkl")
    with open(ss_dir, "wb") as f:
        pickle.dump(ss_outputs, f)
    # Run TPI
    tpi_output = TPI.run_TPI(spec, None)
    assert (np.allclose(tpi_output['bmat_splus1'][:spec.T, :, :],
                        ss_outputs['bssmat_splus1']))
コード例 #19
0
def test_inner_loop():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_inputs.pkl'))
    (outer_loop_vars, params, baseline, baseline_spending) = input_tuple
    ss_params, income_tax_params, chi_params, small_open_params = params
    income_tax_params = ('DEP', ) + income_tax_params
    params = (ss_params, income_tax_params, chi_params, small_open_params)
    test_tuple = SS.inner_loop(outer_loop_vars, params, baseline,
                               baseline_spending)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/inner_loop_outputs.pkl'))

    for i, v in enumerate(expected_tuple):
        assert (np.allclose(test_tuple[i], v))
コード例 #20
0
def test_SS_fsolve_reform():
    # Test SS.SS_fsolve_reform function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_fsolve_reform_inputs.pkl'))
    guesses, params = input_tuple
    params = params + (None, 1)
    (bssmat, nssmat, chi_params, ss_params, income_tax_params,
     iterative_params, factor, small_open_params, client, num_workers) = params
    income_tax_params = ('DEP', ) + income_tax_params
    params = (bssmat, nssmat, chi_params, ss_params, income_tax_params,
              iterative_params, factor, small_open_params, client, num_workers)
    test_list = SS.SS_fsolve_reform(guesses, params)

    expected_list = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_fsolve_reform_outputs.pkl'))

    assert (np.allclose(np.array(test_list), np.array(expected_list)))
コード例 #21
0
def test_run_SS(input_path, expected_path):
    # Test SS.run_SS function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', input_path))
    (income_tax_params, ss_params, iterative_params, chi_params,
     small_open_params, baseline, baseline_spending, baseline_dir) =\
        input_tuple
    income_tax_params = ('DEP', ) + income_tax_params
    test_dict = SS.run_SS(income_tax_params, ss_params, iterative_params,
                          chi_params, small_open_params, baseline,
                          baseline_spending, baseline_dir)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', expected_path))

    for k, v in expected_dict.items():
        assert (np.allclose(test_dict[k], v))
コード例 #22
0
def test_SS_solver():
    # Test SS.SS_solver function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_solver_inputs.pkl'))
    (b_guess_init, n_guess_init, rss, T_Hss, factor_ss, Yss, params, baseline,
     fsolve_flag, baseline_spending) = input_tuple
    (bssmat, nssmat, chi_params, ss_params, income_tax_params,
     iterative_params, small_open_params) = params
    income_tax_params = ('DEP', ) + income_tax_params
    params = (bssmat, nssmat, chi_params, ss_params, income_tax_params,
              iterative_params, small_open_params)
    test_dict = SS.SS_solver(b_guess_init, n_guess_init, rss, T_Hss, factor_ss,
                             Yss, params, baseline, fsolve_flag,
                             baseline_spending)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_solver_outputs.pkl'))

    for k, v in expected_dict.items():
        assert (np.allclose(test_dict[k], v))
コード例 #23
0
        def matcher(d_guess, params):
            income_tax_params, receipts_to_match, ss_params, iterative_params,\
                              chi_params, baseline, baseline_dir = params
            analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
            etr_params[:, 3] = d_guess
            mtrx_params[:, 3] = d_guess
            mtry_params[:, 3] = d_guess
            income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
            ss_outputs = SS.run_SS(income_tax_params,
                                   ss_params,
                                   iterative_params,
                                   chi_params,
                                   baseline,
                                   fix_transfers=fix_transfers,
                                   baseline_dir=baseline_dir)

            receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
            error = abs(receipts_to_match - receipts_new)
            if d_guess <= 0:
                error = 1e14
            print 'Error in taxes:', error
            return error
コード例 #24
0
def test_euler_equation_solver():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/euler_eqn_solver_inputs.pkl'))
    (guesses, params) = input_tuple
    (r, w, T_H, factor, j, J, S, beta, sigma, ltilde, g_y, g_n_ss, tau_payroll,
     retire, mean_income_data, h_wealth, p_wealth, m_wealth, b_ellipse,
     upsilon, j, chi_b, chi_n, tau_bq, rho, lambdas, omega_SS, e,
     analytical_mtrs, etr_params, mtrx_params, mtry_params) = params
    tax_func_type = 'DEP'
    params = (r, w, T_H, factor, j, J, S, beta, sigma, ltilde, g_y, g_n_ss,
              tau_payroll, retire, mean_income_data, h_wealth, p_wealth,
              m_wealth, b_ellipse, upsilon, j, chi_b, chi_n, tau_bq, rho,
              lambdas, omega_SS, e, tax_func_type, analytical_mtrs, etr_params,
              mtrx_params, mtry_params)
    test_list = SS.euler_equation_solver(guesses, params)

    expected_list = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/euler_eqn_solver_outputs.pkl'))

    assert (np.allclose(np.array(test_list), np.array(expected_list)))
コード例 #25
0
 def solve_model(params, d):
     income_tax_params, ss_params, iterative_params,\
                       chi_params, baseline ,baseline_dir = params
     analytical_mtrs, etr_params, mtrx_params, mtry_params = income_tax_params
     etr_params[:, 3] = d
     mtrx_params[:, 3] = d
     mtry_params[:, 3] = d
     income_tax_params = analytical_mtrs, etr_params, mtrx_params, mtry_params
     ss_outputs = SS.run_SS(income_tax_params,
                            ss_params,
                            iterative_params,
                            chi_params,
                            baseline,
                            fix_transfers=fix_transfers,
                            baseline_dir=baseline_dir)
     ss_dir = os.path.join("./OUTPUT_INCOME_REFORM/sigma2.0",
                           "SS/SS_vars.pkl")
     pickle.dump(ss_outputs, open(ss_dir, "wb"))
     receipts_new = ss_outputs['T_Hss'] + ss_outputs['Gss']
     new_error = receipts_to_match - receipts_new
     print 'Error in taxes:', error
     print 'New income tax:', d
     return new_error
コード例 #26
0
def test_create_steady_state_parameters():
    # Test that SS parameters creates same objects with same inputs.
    input_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/create_params_inputs.pkl'))
    input_dict['tax_func_type'] = 'DEP'
    test_tuple = SS.create_steady_state_parameters(**input_dict)

    expected_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/create_params_outputs.pkl'))
    (income_tax_params, ss_params, iterative_params, chi_params,
     small_open_params) = expected_tuple
    income_tax_params = ('DEP', ) + income_tax_params
    expected_tuple = (income_tax_params, ss_params, iterative_params,
                      chi_params, small_open_params)

    for i, v in enumerate(expected_tuple):
        for i2, v2 in enumerate(v):
            try:
                assert (all(test_tuple[i][i2] == v2))
            except ValueError:
                assert ((test_tuple[i][i2] == v2).all())
            except TypeError:
                assert (test_tuple[i][i2] == v2)
コード例 #27
0
ファイル: execute_large.py プロジェクト: drexmca/dynamic
def runner(output_base, input_dir, baseline=False, analytical_mtrs=True, age_specific=False, reform={}, user_params={}, guid='', run_micro=True):

    from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific, reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    globals().update(run_params)

    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(lambdas, J, flag_graphs, output_dir=input_dir)

    # Generate labor data moments
    labor.labor_data_moments(flag_graphs, output_dir=input_dir)

    
    get_baseline = True
    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq', 'calibrate_model',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth', 'get_baseline',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho']


    '''
    ------------------------------------------------------------------------
        Run SS with minimization to fit chi_b and chi_n
    ------------------------------------------------------------------------
    '''

    # This is the simulation before getting the replacement rate values
    sim_params = {}
    glbs = globals()
    lcls = locals()
    for key in param_names:
        if key in glbs:
            sim_params[key] = glbs[key]
        else:
            sim_params[key] = lcls[key]

    sim_params['output_dir'] = input_dir
    sim_params['run_params'] = run_params

    income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_steady_state(income_tax_params, ss_parameters, iterative_params, get_baseline, calibrate_model, output_dir=input_dir)


    '''
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    '''

    ss_outputs['get_baseline'] = get_baseline
    sim_params['input_dir'] = input_dir
    income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, \
    b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n = TPI.create_tpi_params(**sim_params)
    ss_outputs['income_tax_params'] = income_tax_params
    ss_outputs['wealth_tax_params'] = wealth_tax_params
    ss_outputs['ellipse_params'] = ellipse_params
    ss_outputs['parameters'] = parameters
    ss_outputs['N_tilde'] = N_tilde
    ss_outputs['omega_stationary'] = omega_stationary
    ss_outputs['K0'] = K0
    ss_outputs['b_sinit'] = b_sinit
    ss_outputs['b_splus1init'] = b_splus1init
    ss_outputs['L0'] = L0
    ss_outputs['Y0'] = Y0
    ss_outputs['r0'] = r0
    ss_outputs['BQ0'] = BQ0
    ss_outputs['T_H_0'] = T_H_0
    ss_outputs['tax0'] = tax0
    ss_outputs['c0'] = c0
    ss_outputs['initial_b'] = initial_b
    ss_outputs['initial_n'] = initial_n
    ss_outputs['tau_bq'] = tau_bq
    ss_outputs['g_n_vector'] = g_n_vector
    ss_outputs['output_dir'] = input_dir


    with open("ss_outputs.pkl", 'wb') as fp:
        pickle.dump(ss_outputs, fp)

    w_path, r_path, T_H_path, BQ_path, Y_path = TPI.run_time_path_iteration(**ss_outputs)


    print "getting to here...."
    TPI.TP_solutions(w_path, r_path, T_H_path, BQ_path, **ss_outputs)
    print "took {0} seconds to get that part done.".format(time.time() - tick)
コード例 #28
0
ファイル: execute.py プロジェクト: jdebacker/dynamic
def runner_SS(output_base, baseline_dir, baseline=False,
  analytical_mtrs=False, age_specific=False, reform={}, user_params={},
  guid='', run_micro=True):

    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific,
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI


    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates', 'e', 'rho', 'omega_S_preTP']


    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_params, iterative_params, chi_params= SS.create_steady_state_parameters(**sim_params)

    '''
    ****
    CALL CALIBRATION here if boolean flagged
    ****
    '''
    calibrate_model = False
    if calibrate_model:
        chi_params = calibrate.chi_estimate(income_tax_params, ss_params, iterative_params, chi_params, baseline_dir=baseline_dir)

    ss_outputs = SS.run_SS(income_tax_params, ss_params, iterative_params, chi_params, baseline,
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
コード例 #29
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=False,
           analytical_mtrs=False,
           age_specific=False,
           reform={},
           user_params={},
           guid='',
           run_micro=True,
           small_open=False,
           budget_balance=False,
           baseline_spending=False):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    # Make sure options are internally consistent
    if baseline == True and baseline_spending == True:
        print(
            'Inconsistent options. Setting <baseline_spending> to False, leaving <baseline> True.'
        )
        baseline_spending = False
    if budget_balance == True and baseline_spending == True:
        print(
            'Inconsistent options. Setting <baseline_spending> to False, leaving <budget_balance> True.'
        )
        baseline_spending = False

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline,
                                     analytical_mtrs=analytical_mtrs,
                                     age_specific=age_specific,
                                     start_year=user_params['start_year'],
                                     reform=reform,
                                     guid=guid)
    print('In runner, baseline is ', baseline)
    run_params = ogusa.parameters.get_parameters(test=test,
                                                 baseline=baseline,
                                                 guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs
    run_params['small_open'] = small_open
    run_params['budget_balance'] = budget_balance

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print("updating frisch and associated")
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)
    if 'debt_ratio_ss' in user_params:
        run_params['debt_ratio_ss'] = user_params['debt_ratio_ss']

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print("updating g_y_annual and associated")
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(
            float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    # Modify transfer & spending ratios based on user input.
    if 'T_shifts' in user_params:
        if baseline_spending == False:
            print('updating ALPHA_T with T_shifts in first',
                  user_params['T_shifts'].size, 'periods.')
            T_shifts = np.concatenate((user_params['T_shifts'],
                                       np.zeros(run_params['ALPHA_T'].size -
                                                user_params['T_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_T'] = run_params['ALPHA_T'] + T_shifts
    if 'G_shifts' in user_params:
        if baseline_spending == False:
            print('updating ALPHA_G with G_shifts in first',
                  user_params['G_shifts'].size, 'periods.')
            G_shifts = np.concatenate((user_params['G_shifts'],
                                       np.zeros(run_params['ALPHA_G'].size -
                                                user_params['G_shifts'].size)),
                                      axis=0)
            run_params['ALPHA_G'] = run_params['ALPHA_G'] + G_shifts

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'gamma', 'epsilon', 'nu', 'Z', 'delta', 'E',
        'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
        'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon', 'small_open',
        'budget_balance', 'ss_firm_r', 'ss_hh_r', 'tpi_firm_r', 'tpi_hh_r',
        'tG1', 'tG2', 'alpha_T', 'alpha_G', 'ALPHA_T', 'ALPHA_G', 'rho_G',
        'debt_ratio_ss', 'tau_b', 'delta_tau', 'chi_b_guess', 'chi_n_guess',
        'etr_params', 'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq',
        'retire', 'mean_income_data', 'g_n_vector', 'h_wealth', 'p_wealth',
        'm_wealth', 'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates',
        'e', 'rho', 'initial_debt', 'omega_S_preTP'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params = SS.create_steady_state_parameters(
        **sim_params)

    ss_outputs = SS.run_SS(income_tax_params,
                           ss_parameters,
                           iterative_params,
                           chi_params,
                           small_open_params,
                           baseline,
                           baseline_spending,
                           baseline_dir=baseline_dir)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''

        sim_params['baseline'] = baseline
        sim_params['baseline_spending'] = baseline_spending
        sim_params['input_dir'] = output_base
        sim_params['baseline_dir'] = baseline_dir

        income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, SS_values, fiscal_params, biz_tax_params = TPI.create_tpi_params(
            **sim_params)

        tpi_output, macro_output = TPI.run_TPI(
            income_tax_params,
            tpi_params,
            iterative_params,
            small_open_params,
            initial_values,
            SS_values,
            fiscal_params,
            biz_tax_params,
            output_dir=output_base,
            baseline_spending=baseline_spending)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl")
        pickle.dump(macro_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
コード例 #30
0
ファイル: test_SS.py プロジェクト: githubxinwen/OG-JPN
def test_euler_equation_solver():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/euler_eqn_solver_inputs.pkl'))
    (guesses, params) = input_tuple
    p = Specifications()
    (r, w, T_H, factor, j, p.J, p.S, p.beta, p.sigma, p.ltilde, p.g_y,
     p.g_n_ss, tau_payroll, retire, p.mean_income_data, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, j, p.chi_b,
     p.chi_n, tau_bq, p.rho, lambdas, p.omega_SS, p.e,
     p.analytical_mtrs, etr_params, mtrx_params, mtry_params) = params
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.tax_func_type = 'DEP'
    p.lambdas = lambdas.reshape(p.J, 1)
    b_splus1 = np.array(guesses[:p.S]).reshape(p.S, 1) + 0.005
    BQ = aggregates.get_BQ(r, b_splus1, j, p, 'SS', False)
    bq = household.get_bq(BQ, j, p, 'SS')
    args = (r, w, bq, T_H, factor, j, p)
    test_list = SS.euler_equation_solver(guesses, *args)

    expected_list = np.array([
        -3.62741663e+00, -6.30068841e+00, -6.76592886e+00,
        -6.97731223e+00, -7.05777777e+00, -6.57305440e+00,
        -7.11553046e+00, -7.30569622e+00, -7.45808107e+00,
        -7.89984062e+00, -8.11466111e+00, -8.28230086e+00,
        -8.79253862e+00, -8.86994311e+00, -9.31299476e+00,
        -9.80834199e+00, -9.97333771e+00, -1.08349979e+01,
        -1.13199826e+01, -1.22890930e+01, -1.31550471e+01,
        -1.42753713e+01, -1.55721098e+01, -1.73811490e+01,
        -1.88856303e+01, -2.09570569e+01, -2.30559500e+01,
        -2.52127149e+01, -2.76119605e+01, -3.03141128e+01,
        -3.30900203e+01, -3.62799730e+01, -3.91169706e+01,
        -4.24246421e+01, -4.55740527e+01, -4.92914871e+01,
        -5.30682805e+01, -5.70043846e+01, -6.06075991e+01,
        -6.45251018e+01, -6.86128365e+01, -7.35896515e+01,
        -7.92634608e+01, -8.34733231e+01, -9.29802390e+01,
        -1.01179788e+02, -1.10437881e+02, -1.20569527e+02,
        -1.31569973e+02, -1.43633399e+02, -1.57534056e+02,
        -1.73244610e+02, -1.90066728e+02, -2.07980863e+02,
        -2.27589046e+02, -2.50241670e+02, -2.76314755e+02,
        -3.04930986e+02, -3.36196973e+02, -3.70907934e+02,
        -4.10966644e+02, -4.56684022e+02, -5.06945218e+02,
        -5.61838645e+02, -6.22617808e+02, -6.90840503e+02,
        -7.67825713e+02, -8.54436805e+02, -9.51106365e+02,
        -1.05780305e+03, -1.17435473e+03, -1.30045062e+03,
        -1.43571221e+03, -1.57971603e+03, -1.73204264e+03,
        -1.88430524e+03, -2.03403679e+03, -2.17861987e+03,
        -2.31532884e+03, -8.00654731e+03, -5.21487172e-02,
        -2.80234170e-01, 4.93894552e-01, 3.11884938e-01, 6.55799607e-01,
        5.62182419e-01,  3.86074983e-01,  3.43741491e-01,  4.22461089e-01,
        3.63707951e-01,  4.93150010e-01,  4.72813688e-01,  4.07390308e-01,
        4.94974186e-01,  4.69900128e-01,  4.37562389e-01,  5.67370182e-01,
        4.88965362e-01,  6.40728461e-01,  6.14619979e-01,  4.97173823e-01,
        6.19549666e-01,  6.51193557e-01,  4.48906118e-01,  7.93091492e-01,
        6.51249363e-01,  6.56307713e-01,  1.12948552e+00,  9.50018058e-01,
        6.79613030e-01,  9.51359123e-01,  6.31059147e-01,  7.97896887e-01,
        8.44620817e-01,  7.43683837e-01,  1.56693187e+00,  2.75630011e-01,
        5.32956891e-01,  1.57110727e+00,  1.22674610e+00, 4.63932928e-01,
        1.47225464e+00,  1.16948107e+00,  1.07965795e+00, -3.20557791e-01,
        -1.17064127e+00, -7.84880649e-01, -7.60851182e-01, -1.61415945e+00,
        -8.30363975e-01, -1.68459409e+00, -1.49260581e+00, -1.84257084e+00,
        -1.72143079e+00, -1.43131579e+00, -1.63719219e+00, -1.43874851e+00,
        -1.57207905e+00, -1.72909159e+00, -1.98778122e+00, -1.80843826e+00,
        -2.12828312e+00, -2.24768762e+00, -2.36961877e+00, -2.49117258e+00,
        -2.59914065e+00, -2.82309085e+00, -2.93613362e+00, -3.34446991e+00,
        -3.45445086e+00, -3.74962140e+00, -3.78113417e+00, -4.55643800e+00,
        -4.86929016e+00, -5.08657898e+00, -5.22054177e+00, -5.54606515e+00,
        -5.78478304e+00, -5.93652041e+00, -6.11519786e+00])

    assert(np.allclose(np.array(test_list), np.array(expected_list)))
コード例 #31
0
ファイル: test_sstpi.py プロジェクト: jdebacker/dynamic
def test_sstpi():
    import tempfile
    import pickle
    import numpy as np
    import numpy as np
    import cPickle as pickle
    import os

    import ogusa

    ogusa.parameters.DATASET = "REAL"

    from ogusa.utils import comp_array
    from ogusa.utils import comp_scalar
    from ogusa.utils import dict_compare
    from ogusa.utils import pickle_file_compare

    import ogusa.SS
    import ogusa.TPI
    from ogusa import parameters, wealth, labor, demographics, income, SS, TPI

    globals().update(ogusa.parameters.get_parameters())

    # Generate Wealth data moments
    output_dir = TEST_OUTPUT
    input_dir = "./OUTPUT"
    wealth.get_wealth_data(lambdas, J, flag_graphs, output_dir)

    # Generate labor data moments
    labor.labor_data_moments(flag_graphs, output_dir=output_dir)

    get_baseline = True
    calibrate_model = False

    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)
    param_names = [
        "S",
        "J",
        "T",
        "lambdas",
        "starting_age",
        "ending_age",
        "beta",
        "sigma",
        "alpha",
        "nu",
        "Z",
        "delta",
        "E",
        "ltilde",
        "g_y",
        "maxiter",
        "mindist_SS",
        "mindist_TPI",
        "b_ellipse",
        "k_ellipse",
        "upsilon",
        "a_tax_income",
        "chi_b_guess",
        "chi_n_guess",
        "b_tax_income",
        "c_tax_income",
        "d_tax_income",
        "tau_payroll",
        "tau_bq",
        "calibrate_model",
        "retire",
        "mean_income_data",
        "g_n_vector",
        "h_wealth",
        "p_wealth",
        "m_wealth",
        "get_baseline",
        "omega",
        "g_n_ss",
        "omega_SS",
        "surv_rate",
        "e",
        "rho",
    ]

    """
    ------------------------------------------------------------------------
        Run SS with minimization to fit chi_b and chi_n
    ------------------------------------------------------------------------
    """

    # This is the simulation before getting the replacement rate values
    sim_params = {}
    for key in param_names:
        try:
            sim_params[key] = locals()[key]
        except KeyError:
            sim_params[key] = globals()[key]

    sim_params["output_dir"] = output_dir
    sim_params["input_dir"] = input_dir
    income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(
        **sim_params
    )

    ss_outputs = SS.run_steady_state(
        ss_parameters, iterative_params, get_baseline, calibrate_model, output_dir=output_dir
    )

    """
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    """

    ss_outputs["get_baseline"] = get_baseline
    income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n = TPI.create_tpi_params(
        **sim_params
    )
    ss_outputs["output_dir"] = output_dir
    ss_outputs["income_tax_params"] = income_tax_params
    ss_outputs["wealth_tax_params"] = wealth_tax_params
    ss_outputs["ellipse_params"] = ellipse_params
    ss_outputs["parameters"] = parameters
    ss_outputs["N_tilde"] = N_tilde
    ss_outputs["omega_stationary"] = omega_stationary
    ss_outputs["K0"] = K0
    ss_outputs["b_sinit"] = b_sinit
    ss_outputs["b_splus1init"] = b_splus1init
    ss_outputs["L0"] = L0
    ss_outputs["Y0"] = Y0
    ss_outputs["r0"] = r0
    ss_outputs["BQ0"] = BQ0
    ss_outputs["T_H_0"] = T_H_0
    ss_outputs["tax0"] = tax0
    ss_outputs["c0"] = c0
    ss_outputs["initial_b"] = initial_b
    ss_outputs["initial_n"] = initial_n
    ss_outputs["tau_bq"] = tau_bq
    ss_outputs["g_n_vector"] = g_n_vector
    TPI.run_time_path_iteration(**ss_outputs)

    # Platform specific exceptions:
    if sys.platform == "darwin":
        exceptions = {"tax_path": 0.08, "c_path": 0.02, "b_mat": 0.0017, "solutions": 0.005}
    else:
        exceptions = {}

    # compare results to test data
    for old, new in zip(oldfiles, newfiles):
        print "trying a pair"
        print old, new
        assert pickle_file_compare(old, new, exceptions=exceptions, relative=True)
        print "next pair"
コード例 #32
0
ファイル: execute.py プロジェクト: salimfurth/OG-USA
def runner(output_base, baseline_dir, test=False, time_path=True, baseline=False,
  analytical_mtrs=False, age_specific=False, reform={}, user_params={},
  guid='', run_micro=True, small_open=False, budget_balance=False, baseline_spending=False):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()
    
    # Make sure options are internally consistent
    if baseline==True and baseline_spending==True:
        print 'Inconsistent options. Setting <baseline_spending> to False, leaving <baseline> True.'
        baseline_spending = False
    if budget_balance==True and baseline_spending==True:
        print 'Inconsistent options. Setting <baseline_spending> to False, leaving <budget_balance> True.'
        baseline_spending = False

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific,
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print 'In runner, baseline is ', baseline
    run_params = ogusa.parameters.get_parameters(test=test, baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs
    run_params['small_open'] = small_open
    run_params['budget_balance'] = budget_balance

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating frisch and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)
    if 'debt_ratio_ss' in user_params:
        run_params['debt_ratio_ss']=user_params['debt_ratio_ss']

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params['ending_age']
        starting_age = run_params['starting_age']
        S = run_params['S']
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)
        
    # Modify transfer & spending ratios based on user input.
    if 'T_shifts' in user_params:
        if baseline_spending==False:
            print 'updating ALPHA_T with T_shifts in first', user_params['T_shifts'].size, 'periods.'                                            
            T_shifts = np.concatenate((user_params['T_shifts'], np.zeros(run_params['ALPHA_T'].size - user_params['T_shifts'].size)), axis=0)
            run_params['ALPHA_T'] = run_params['ALPHA_T'] + T_shifts
    if 'G_shifts' in user_params:
        if baseline_spending==False:
            print 'updating ALPHA_G with G_shifts in first', user_params['G_shifts'].size, 'periods.'                                            
            G_shifts = np.concatenate((user_params['G_shifts'], np.zeros(run_params['ALPHA_G'].size - user_params['G_shifts'].size)), axis=0)
            run_params['ALPHA_G'] = run_params['ALPHA_G'] + G_shifts

    from ogusa import SS, TPI

    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'gamma', 'epsilon', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'small_open', 'budget_balance', 'ss_firm_r', 'ss_hh_r', 'tpi_firm_r', 'tpi_hh_r',
                'tG1', 'tG2', 'alpha_T', 'alpha_G', 'ALPHA_T', 'ALPHA_G', 'rho_G', 'debt_ratio_ss',
                'tau_b', 'delta_tau',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'imm_rates','e', 'rho',
                'initial_debt','omega_S_preTP']

    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params
    income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(income_tax_params, ss_parameters, iterative_params, chi_params, small_open_params, baseline, baseline_spending,
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''

        sim_params['baseline'] = baseline
        sim_params['baseline_spending'] = baseline_spending
        sim_params['input_dir'] = output_base
        sim_params['baseline_dir'] = baseline_dir


        income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, SS_values, fiscal_params, biz_tax_params = TPI.create_tpi_params(**sim_params)

        tpi_output, macro_output = TPI.run_TPI(income_tax_params, tpi_params, iterative_params, small_open_params, initial_values, 
                                               SS_values, fiscal_params, biz_tax_params, output_dir=output_base, baseline_spending=baseline_spending)

        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_macro_vars.pkl")
        pickle.dump(macro_output, open(tpi_vars, "wb"))


        print "Time path iteration complete."
    print "It took {0} seconds to get that part done.".format(time.time() - tick)
コード例 #33
0
ファイル: execute.py プロジェクト: parkerrogers/OG-USA
def runner_SS(output_base, baseline_dir, baseline=False, analytical_mtrs=True, age_specific=False, reform={}, user_params={}, guid='', run_micro=True):

    from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific, 
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    globals().update(run_params)

    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(lambdas, J, flag_graphs, output_dir=output_base)

    # Generate labor data moments
    labor.labor_data_moments(flag_graphs, output_dir=output_base)

    
    get_baseline = True
    calibrate_model = True
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq', 'calibrate_model',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth', 'get_baseline',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho']


    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    glbs = globals()
    lcls = locals()
    for key in param_names:
        if key in glbs:
            sim_params[key] = glbs[key]
        else:
            sim_params[key] = lcls[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_steady_state(income_tax_params, ss_parameters, iterative_params, baseline, 
                                     calibrate_model, output_dir=output_base, baseline_dir=baseline_dir)
コード例 #34
0
def runner(output_base,
           baseline_dir,
           test=False,
           time_path=True,
           baseline=True,
           reform={},
           user_params={},
           guid='',
           run_micro=True,
           data=None,
           client=None,
           num_workers=1):

    tick = time.time()
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass

    print('In runner, baseline is ', baseline)

    # Get parameter class
    # Note - set run_micro false when initially load class
    # Update later with call to spec.get_tax_function_parameters()
    spec = Specifications(run_micro=False,
                          output_base=output_base,
                          baseline_dir=baseline_dir,
                          test=test,
                          time_path=time_path,
                          baseline=baseline,
                          reform=reform,
                          guid=guid,
                          data=data,
                          client=client,
                          num_workers=num_workers)

    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(client, run_micro)
    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    ss_outputs = SS.run_SS(spec, client=client)
    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''
        tpi_output = TPI.run_TPI(spec, client=client)
        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(time.time() -
                                                              tick))
コード例 #35
0
ファイル: run_simulation.py プロジェクト: Jennydeng123/OG-USA
    'get_baseline', 'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho'
]
'''
------------------------------------------------------------------------
    Run SS with minimization to fit chi_b and chi_n
------------------------------------------------------------------------
'''

# This is the simulation before getting the replacement rate values
sim_params = {}
for key in param_names:
    sim_params[key] = globals()[key]

#pickle.dump(dictionary, open("OUTPUT/Saved_moments/params_given.pkl", "w"))
#call(['python', 'SS.py'])
income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(
    **sim_params)

ss_outputs = SS.run_steady_state(ss_parameters, iterative_params, get_baseline,
                                 calibrate_model)
'''
------------------------------------------------------------------------
    Run the baseline TPI simulation
------------------------------------------------------------------------
'''

ss_outputs['get_baseline'] = get_baseline
income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, \
b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n = TPI.create_tpi_params(**sim_params)
ss_outputs['income_tax_params'] = income_tax_params
ss_outputs['wealth_tax_params'] = wealth_tax_params
ss_outputs['ellipse_params'] = ellipse_params
コード例 #36
0
ファイル: test_SS.py プロジェクト: rickecon/OG-USA
def test_run_SS(input_path, expected_path):
    # Test SS.run_SS function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', input_path))
    (income_tax_params, ss_params, iterative_params, chi_params,
     small_open_params, baseline, baseline_spending, baseline_dir) =\
        input_tuple
    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.baseline_dir = baseline_dir
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.maxiter, p.mindist_SS = iterative_params
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1
    test_dict = SS.run_SS(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data', expected_path))

    # delete values key-value pairs that are not in both dicts
    del expected_dict['bssmat'], expected_dict['chi_n'], expected_dict['chi_b']
    del test_dict['etr_ss'], test_dict['mtrx_ss'], test_dict['mtry_ss']
    test_dict['IITpayroll_revenue'] = (test_dict['total_revenue_ss'] -
                                       test_dict['business_revenue'])
    del test_dict['T_Pss'], test_dict['T_BQss'], test_dict['T_Wss']
    del test_dict['resource_constraint_error'], test_dict['T_Css']
    del test_dict['r_gov_ss'], test_dict['r_hh_ss']
    test_dict['revenue_ss'] = test_dict.pop('total_revenue_ss')

    for k, v in expected_dict.items():
        assert(np.allclose(test_dict[k], v))
コード例 #37
0
ファイル: execute.py プロジェクト: rickecon/OG-USA
def runner(output_base, baseline_dir, test=False, time_path=True,
           baseline=True, reform={}, user_params={}, guid='',
           run_micro=True, data=None, client=None, num_workers=1):

    tick = time.time()
    # Create output directory structure
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print("making dir: ", _dir)
            os.makedirs(_dir)
        except OSError:
            pass

    print('In runner, baseline is ', baseline)

    # Get parameter class
    # Note - set run_micro false when initially load class
    # Update later with call to spec.get_tax_function_parameters()
    spec = Specifications(run_micro=False, output_base=output_base,
                          baseline_dir=baseline_dir, test=test,
                          time_path=time_path, baseline=baseline,
                          reform=reform, guid=guid, data=data,
                          client=client, num_workers=num_workers)

    spec.update_specifications(user_params)
    print('path for tax functions: ', spec.output_base)
    spec.get_tax_function_parameters(client, run_micro)

    '''
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    '''
    ss_outputs = SS.run_SS(spec, client=client)

    '''
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(baseline_dir, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
        # Save pickle with parameter values for the run
        param_dir = os.path.join(output_base, "model_params.pkl")
        pickle.dump(spec, open(param_dir, "wb"))

    if time_path:
        '''
        ------------------------------------------------------------------------
            Run the TPI simulation
        ------------------------------------------------------------------------
        '''
        tpi_output = TPI.run_TPI(spec, client=client)

        '''
        ------------------------------------------------------------------------
            Pickle TPI results
        ------------------------------------------------------------------------
        '''
        tpi_dir = os.path.join(output_base, "TPI")
        utils.mkdirs(tpi_dir)
        tpi_vars = os.path.join(tpi_dir, "TPI_vars.pkl")
        pickle.dump(tpi_output, open(tpi_vars, "wb"))

        print("Time path iteration complete.")
    print("It took {0} seconds to get that part done.".format(
        time.time() - tick))
コード例 #38
0
ファイル: execute_large.py プロジェクト: salimfurth/OG-USA
def runner(output_base, baseline_dir, baseline=False, analytical_mtrs=True, age_specific=False, reform={}, user_params={}, guid='', run_micro=True):

    #from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import parameters, wealth, labor, demog, income, utils
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline, analytical_mtrs=analytical_mtrs, age_specific=age_specific, 
                                     start_year=user_params['start_year'], reform=reform, guid=guid)
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params['frisch'],
                                                               run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)


    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(run_params['lambdas'], run_params['J'], run_params['flag_graphs'], output_dir=output_base)

    # Generate labor data moments
    labor.labor_data_moments(run_params['flag_graphs'], output_dir=output_base)

    
    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = ['S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age',
                'beta', 'sigma', 'alpha', 'nu', 'Z', 'delta', 'E',
                'ltilde', 'g_y', 'maxiter', 'mindist_SS', 'mindist_TPI',
                'analytical_mtrs', 'b_ellipse', 'k_ellipse', 'upsilon',
                'chi_b_guess', 'chi_n_guess','etr_params','mtrx_params',
                'mtry_params','tau_payroll', 'tau_bq',
                'retire', 'mean_income_data', 'g_n_vector',
                'h_wealth', 'p_wealth', 'm_wealth',
                'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho']


    '''
    ------------------------------------------------------------------------
        Run SS 
    ------------------------------------------------------------------------
    '''

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params['output_dir'] = output_base
    sim_params['run_params'] = run_params

    income_tax_params, ss_parameters, iterative_params, chi_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(income_tax_params, ss_parameters, iterative_params, chi_params, baseline, 
                                     baseline_dir=baseline_dir)

    '''
    ------------------------------------------------------------------------
        Pickle SS results 
    ------------------------------------------------------------------------
    '''
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_dir, "SS"))
        ss_dir = os.path.join(output_dir, "SS/ss_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))


    '''
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    '''

    sim_params['input_dir'] = output_base
    sim_params['baseline_dir'] = baseline_dir
    

    income_tax_params, tpi_params, iterative_params, initial_values, SS_values = TPI.create_tpi_params(**sim_params)

    # ss_outputs['income_tax_params'] = income_tax_params
    # ss_outputs['wealth_tax_params'] = wealth_tax_params
    # ss_outputs['ellipse_params'] = ellipse_params
    # ss_outputs['parameters'] = parameters
    # ss_outputs['N_tilde'] = N_tilde
    # ss_outputs['omega_stationary'] = omega_stationary
    # ss_outputs['K0'] = K0
    # ss_outputs['b_sinit'] = b_sinit
    # ss_outputs['b_splus1init'] = b_splus1init
    # ss_outputs['L0'] = L0
    # ss_outputs['Y0'] = Y0
    # ss_outputs['r0'] = r0
    # ss_outputs['BQ0'] = BQ0
    # ss_outputs['T_H_0'] = T_H_0
    # ss_outputs['factor_ss'] = factor
    # ss_outputs['tax0'] = tax0
    # ss_outputs['c0'] = c0
    # ss_outputs['initial_b'] = initial_b
    # ss_outputs['initial_n'] = initial_n
    # ss_outputs['tau_bq'] = tau_bq
    # ss_outputs['g_n_vector'] = g_n_vector
    # ss_outputs['output_dir'] = output_base


    # with open("ss_outputs.pkl", 'wb') as fp:
    #     pickle.dump(ss_outputs, fp)

    w_path, r_path, T_H_path, BQ_path, Y_path = TPI.run_TPI(income_tax_params, 
        tpi_params, iterative_params, initial_values, SS_values, output_dir=output_base)


    print "getting to here...."
    TPI.TP_solutions(w_path, r_path, T_H_path, BQ_path, **ss_outputs)
    print "took {0} seconds to get that part done.".format(time.time() - tick)
コード例 #39
0
             'omega', 'g_n_ss', 'omega_SS', 'surv_rate', 'e', 'rho']

'''
------------------------------------------------------------------------
    Run SS with minimization to fit chi_b and chi_n
------------------------------------------------------------------------
'''

# This is the simulation before getting the replacement rate values
sim_params = {}
for key in param_names:
    sim_params[key] = globals()[key]

#pickle.dump(dictionary, open("OUTPUT/Saved_moments/params_given.pkl", "w"))
#call(['python', 'SS.py'])
income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(**sim_params)


ss_outputs = SS.run_steady_state(income_tax_params, ss_parameters, iterative_params, get_baseline, calibrate_model)


'''
------------------------------------------------------------------------
    Run the baseline TPI simulation
------------------------------------------------------------------------
'''

ss_outputs['get_baseline'] = get_baseline
income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, \
b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n = TPI.create_tpi_params(**sim_params)
ss_outputs['income_tax_params'] = income_tax_params
コード例 #40
0
ファイル: test_SS.py プロジェクト: githubxinwen/OG-JPN
def test_SS_solver():
    # Test SS.SS_solver function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_solver_inputs.pkl'))
    (b_guess_init, n_guess_init, rss, T_Hss, factor_ss, Yss, params,
     baseline, fsolve_flag, baseline_spending) = input_tuple
    (bssmat, nssmat, chi_params, ss_params, income_tax_params,
     iterative_params, small_open_params) = params

    p = Specifications()
    (p.J, p.S, p.T, p.BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n_ss, tau_payroll,
     tau_bq, p.rho, p.omega_SS, p.budget_balance, alpha_T,
     p.debt_ratio_ss, tau_b, delta_tau, lambdas, imm_rates, p.e,
     retire, p.mean_income_data, h_wealth, p_wealth, m_wealth,
     p.b_ellipse, p.upsilon) = ss_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.alpha_T = np.ones(p.T + p.S) * alpha_T
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.lambdas = lambdas.reshape(p.J, 1)
    p.imm_rates = imm_rates.reshape(1, p.S)
    p.tax_func_type = 'DEP'
    p.baseline = baseline
    p.baseline_spending = baseline_spending
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.maxiter, p.mindist_SS = iterative_params
    p.chi_b, p.chi_n = chi_params
    p.small_open, firm_r, hh_r = small_open_params
    p.firm_r = np.ones(p.T + p.S) * firm_r
    p.hh_r = np.ones(p.T + p.S) * hh_r
    p.num_workers = 1

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/SS_solver_outputs.pkl'))

    BQss = expected_dict['BQss']
    test_dict = SS.SS_solver(b_guess_init, n_guess_init, rss, BQss, T_Hss,
                             factor_ss, Yss, p, None, fsolve_flag)

    # delete values key-value pairs that are not in both dicts
    del expected_dict['bssmat'], expected_dict['chi_n'], expected_dict['chi_b']
    del expected_dict['Iss_total']
    del test_dict['etr_ss'], test_dict['mtrx_ss'], test_dict['mtry_ss']
    test_dict['IITpayroll_revenue'] = (test_dict['total_revenue_ss'] -
                                       test_dict['business_revenue'])
    del test_dict['T_Pss'], test_dict['T_BQss'], test_dict['T_Wss']
    del test_dict['K_d_ss'], test_dict['K_f_ss'], test_dict['D_d_ss']
    del test_dict['D_f_ss'], test_dict['I_d_ss']
    del test_dict['debt_service_f'], test_dict['new_borrowing_f']
    del test_dict['bqssmat'], test_dict['T_Css'], test_dict['Iss_total']
    test_dict['revenue_ss'] = test_dict.pop('total_revenue_ss')

    for k, v in expected_dict.items():
        print('Testing ', k)
        assert(np.allclose(test_dict[k], v))
コード例 #41
0
ファイル: execute_small.py プロジェクト: jdebacker/dynamic
def runner_SS(
    output_base,
    baseline_dir,
    baseline=False,
    analytical_mtrs=False,
    age_specific=False,
    reform={},
    user_params={},
    guid="",
    run_micro=True,
):

    from ogusa import parameters, demographics, income, utils
    from ogusa import txfunc

    tick = time.time()

    # Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ss_dir = os.path.join(output_base, "SS")
    tpi_dir = os.path.join(output_base, "TPI")
    dirs = [saved_moments_dir, ss_dir, tpi_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(
            baseline=baseline,
            analytical_mtrs=analytical_mtrs,
            age_specific=age_specific,
            start_year=user_params["start_year"],
            reform=reform,
            guid=guid,
        )
    print ("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params["analytical_mtrs"] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if "frisch" in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(user_params["frisch"], run_params["ltilde"])
        run_params["b_ellipse"] = b_ellipse
        run_params["upsilon"] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if "g_y_annual" in user_params:
        print "updating g_y_annual and associated"
        ending_age = run_params["ending_age"]
        starting_age = run_params["starting_age"]
        S = run_params["S"]
        g_y = (1 + user_params["g_y_annual"]) ** (float(ending_age - starting_age) / S) - 1
        run_params["g_y"] = g_y
        run_params.update(user_params)

    from ogusa import SS, TPI

    """
    ****
    CALL CALIBRATION here if boolean flagged

    ****
    """
    calibrate_model = False
    # if calibrate_model:
    #     chi_b, chi_n = calibrate.(income_tax_params, ss_params, iterative_params, chi_params, baseline,
    #                                  calibrate_model, output_dir=output_base, baseline_dir=baseline_dir)

    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        "S",
        "J",
        "T",
        "BW",
        "lambdas",
        "starting_age",
        "ending_age",
        "beta",
        "sigma",
        "alpha",
        "nu",
        "Z",
        "delta",
        "E",
        "ltilde",
        "g_y",
        "maxiter",
        "mindist_SS",
        "mindist_TPI",
        "analytical_mtrs",
        "b_ellipse",
        "k_ellipse",
        "upsilon",
        "chi_b_guess",
        "chi_n_guess",
        "etr_params",
        "mtrx_params",
        "mtry_params",
        "tau_payroll",
        "tau_bq",
        "retire",
        "mean_income_data",
        "g_n_vector",
        "h_wealth",
        "p_wealth",
        "m_wealth",
        "omega",
        "g_n_ss",
        "omega_SS",
        "surv_rate",
        "imm_rates",
        "e",
        "rho",
        "omega_S_preTP",
    ]

    """
    ------------------------------------------------------------------------
        Run SS
    ------------------------------------------------------------------------
    """

    sim_params = {}
    for key in param_names:
        sim_params[key] = run_params[key]

    sim_params["output_dir"] = output_base
    sim_params["run_params"] = run_params

    income_tax_params, ss_params, iterative_params, chi_params = SS.create_steady_state_parameters(**sim_params)

    ss_outputs = SS.run_SS(
        income_tax_params, ss_params, iterative_params, chi_params, baseline, baseline_dir=baseline_dir
    )

    """
    ------------------------------------------------------------------------
        Pickle SS results
    ------------------------------------------------------------------------
    """
    if baseline:
        utils.mkdirs(os.path.join(baseline_dir, "SS"))
        ss_dir = os.path.join(baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(output_base, "SS"))
        ss_dir = os.path.join(output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
コード例 #42
0
ファイル: test_SS.py プロジェクト: rickecon/OG-USA
def test_euler_equation_solver():
    # Test SS.inner_loop function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/euler_eqn_solver_inputs.pkl'))
    (guesses, params) = input_tuple
    p = Specifications()
    (r, w, T_H, factor, j, p.J, p.S, p.beta, p.sigma, p.ltilde, p.g_y,
     p.g_n_ss, tau_payroll, retire, p.mean_income_data, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, j, p.chi_b,
     p.chi_n, tau_bq, p.rho, lambdas, p.omega_SS, p.e,
     p.analytical_mtrs, etr_params, mtrx_params, mtry_params) = params
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.etr_params = np.transpose(etr_params.reshape(
        p.S, 1, etr_params.shape[-1]), (1, 0, 2))
    p.mtrx_params = np.transpose(mtrx_params.reshape(
        p.S, 1, mtrx_params.shape[-1]), (1, 0, 2))
    p.mtry_params = np.transpose(mtry_params.reshape(
        p.S, 1, mtry_params.shape[-1]), (1, 0, 2))
    p.tax_func_type = 'DEP'
    p.lambdas = lambdas.reshape(p.J, 1)
    b_splus1 = np.array(guesses[:p.S]).reshape(p.S, 1) + 0.005
    BQ = aggregates.get_BQ(r, b_splus1, j, p, 'SS', False)
    bq = household.get_bq(BQ, j, p, 'SS')
    args = (r, w, bq, T_H, factor, j, p)
    test_list = SS.euler_equation_solver(guesses, *args)

    expected_list = np.array([
        -3.62741663e+00, -6.30068841e+00, -6.76592886e+00,
        -6.97731223e+00, -7.05777777e+00, -6.57305440e+00,
        -7.11553046e+00, -7.30569622e+00, -7.45808107e+00,
        -7.89984062e+00, -8.11466111e+00, -8.28230086e+00,
        -8.79253862e+00, -8.86994311e+00, -9.31299476e+00,
        -9.80834199e+00, -9.97333771e+00, -1.08349979e+01,
        -1.13199826e+01, -1.22890930e+01, -1.31550471e+01,
        -1.42753713e+01, -1.55721098e+01, -1.73811490e+01,
        -1.88856303e+01, -2.09570569e+01, -2.30559500e+01,
        -2.52127149e+01, -2.76119605e+01, -3.03141128e+01,
        -3.30900203e+01, -3.62799730e+01, -3.91169706e+01,
        -4.24246421e+01, -4.55740527e+01, -4.92914871e+01,
        -5.30682805e+01, -5.70043846e+01, -6.06075991e+01,
        -6.45251018e+01, -6.86128365e+01, -7.35896515e+01,
        -7.92634608e+01, -8.34733231e+01, -9.29802390e+01,
        -1.01179788e+02, -1.10437881e+02, -1.20569527e+02,
        -1.31569973e+02, -1.43633399e+02, -1.57534056e+02,
        -1.73244610e+02, -1.90066728e+02, -2.07980863e+02,
        -2.27589046e+02, -2.50241670e+02, -2.76314755e+02,
        -3.04930986e+02, -3.36196973e+02, -3.70907934e+02,
        -4.10966644e+02, -4.56684022e+02, -5.06945218e+02,
        -5.61838645e+02, -6.22617808e+02, -6.90840503e+02,
        -7.67825713e+02, -8.54436805e+02, -9.51106365e+02,
        -1.05780305e+03, -1.17435473e+03, -1.30045062e+03,
        -1.43571221e+03, -1.57971603e+03, -1.73204264e+03,
        -1.88430524e+03, -2.03403679e+03, -2.17861987e+03,
        -2.31532884e+03, -8.00654731e+03, -5.21487172e-02,
        -2.80234170e-01, 4.93894552e-01, 3.11884938e-01, 6.55799607e-01,
        5.62182419e-01,  3.86074983e-01,  3.43741491e-01,  4.22461089e-01,
        3.63707951e-01,  4.93150010e-01,  4.72813688e-01,  4.07390308e-01,
        4.94974186e-01,  4.69900128e-01,  4.37562389e-01,  5.67370182e-01,
        4.88965362e-01,  6.40728461e-01,  6.14619979e-01,  4.97173823e-01,
        6.19549666e-01,  6.51193557e-01,  4.48906118e-01,  7.93091492e-01,
        6.51249363e-01,  6.56307713e-01,  1.12948552e+00,  9.50018058e-01,
        6.79613030e-01,  9.51359123e-01,  6.31059147e-01,  7.97896887e-01,
        8.44620817e-01,  7.43683837e-01,  1.56693187e+00,  2.75630011e-01,
        5.32956891e-01,  1.57110727e+00,  1.22674610e+00, 4.63932928e-01,
        1.47225464e+00,  1.16948107e+00,  1.07965795e+00, -3.20557791e-01,
        -1.17064127e+00, -7.84880649e-01, -7.60851182e-01, -1.61415945e+00,
        -8.30363975e-01, -1.68459409e+00, -1.49260581e+00, -1.84257084e+00,
        -1.72143079e+00, -1.43131579e+00, -1.63719219e+00, -1.43874851e+00,
        -1.57207905e+00, -1.72909159e+00, -1.98778122e+00, -1.80843826e+00,
        -2.12828312e+00, -2.24768762e+00, -2.36961877e+00, -2.49117258e+00,
        -2.59914065e+00, -2.82309085e+00, -2.93613362e+00, -3.34446991e+00,
        -3.45445086e+00, -3.74962140e+00, -3.78113417e+00, -4.55643800e+00,
        -4.86929016e+00, -5.08657898e+00, -5.22054177e+00, -5.54606515e+00,
        -5.78478304e+00, -5.93652041e+00, -6.11519786e+00])

    assert(np.allclose(np.array(test_list), np.array(expected_list)))
コード例 #43
0
ファイル: execute_large.py プロジェクト: chun1211/OG-USA
def runner(output_base,
           input_dir,
           baseline=False,
           analytical_mtrs=True,
           reform={},
           user_params={},
           guid='',
           run_micro=True):

    from ogusa import parameters, wealth, labor, demographics, income
    from ogusa import txfunc

    tick = time.time()

    #Create output directory structure
    saved_moments_dir = os.path.join(output_base, "Saved_moments")
    ssinit_dir = os.path.join(output_base, "SSinit")
    tpiinit_dir = os.path.join(output_base, "TPIinit")
    dirs = [saved_moments_dir, ssinit_dir, tpiinit_dir]
    for _dir in dirs:
        try:
            print "making dir: ", _dir
            os.makedirs(_dir)
        except OSError as oe:
            pass

    if run_micro:
        txfunc.get_tax_func_estimate(baseline=baseline,
                                     analytical_mtrs=analytical_mtrs,
                                     reform=reform,
                                     guid=guid)
    print("in runner, baseline is ", baseline)
    run_params = ogusa.parameters.get_parameters(baseline=baseline, guid=guid)
    run_params['analytical_mtrs'] = analytical_mtrs

    # Modify ogusa parameters based on user input
    if 'frisch' in user_params:
        print "updating fricsh and associated"
        b_ellipse, upsilon = ogusa.elliptical_u_est.estimation(
            user_params['frisch'], run_params['ltilde'])
        run_params['b_ellipse'] = b_ellipse
        run_params['upsilon'] = upsilon
        run_params.update(user_params)

    # Modify ogusa parameters based on user input
    if 'g_y_annual' in user_params:
        print "updating g_y_annual and associated"
        g_y = (1 + user_params['g_y_annual'])**(
            float(ending_age - starting_age) / S) - 1
        run_params['g_y'] = g_y
        run_params.update(user_params)

    globals().update(run_params)

    from ogusa import SS, TPI
    # Generate Wealth data moments
    wealth.get_wealth_data(lambdas, J, flag_graphs, output_dir=input_dir)

    # Generate labor data moments
    labor.labor_data_moments(flag_graphs, output_dir=input_dir)

    get_baseline = True
    calibrate_model = False
    # List of parameter names that will not be changing (unless we decide to
    # change them for a tax experiment)

    param_names = [
        'S', 'J', 'T', 'BW', 'lambdas', 'starting_age', 'ending_age', 'beta',
        'sigma', 'alpha', 'nu', 'Z', 'delta', 'E', 'ltilde', 'g_y', 'maxiter',
        'mindist_SS', 'mindist_TPI', 'analytical_mtrs', 'b_ellipse',
        'k_ellipse', 'upsilon', 'chi_b_guess', 'chi_n_guess', 'etr_params',
        'mtrx_params', 'mtry_params', 'tau_payroll', 'tau_bq',
        'calibrate_model', 'retire', 'mean_income_data', 'g_n_vector',
        'h_wealth', 'p_wealth', 'm_wealth', 'get_baseline', 'omega', 'g_n_ss',
        'omega_SS', 'surv_rate', 'e', 'rho'
    ]
    '''
    ------------------------------------------------------------------------
        Run SS with minimization to fit chi_b and chi_n
    ------------------------------------------------------------------------
    '''

    # This is the simulation before getting the replacement rate values
    sim_params = {}
    glbs = globals()
    lcls = locals()
    for key in param_names:
        if key in glbs:
            sim_params[key] = glbs[key]
        else:
            sim_params[key] = lcls[key]

    sim_params['output_dir'] = input_dir
    sim_params['run_params'] = run_params

    income_tax_params, wealth_tax_params, ellipse_params, ss_parameters, iterative_params = SS.create_steady_state_parameters(
        **sim_params)

    ss_outputs = SS.run_steady_state(income_tax_params,
                                     ss_parameters,
                                     iterative_params,
                                     get_baseline,
                                     calibrate_model,
                                     output_dir=input_dir)
    '''
    ------------------------------------------------------------------------
        Run the baseline TPI simulation
    ------------------------------------------------------------------------
    '''

    ss_outputs['get_baseline'] = get_baseline
    sim_params['input_dir'] = input_dir
    income_tax_params, wealth_tax_params, ellipse_params, parameters, N_tilde, omega_stationary, K0, b_sinit, \
    b_splus1init, L0, Y0, w0, r0, BQ0, T_H_0, tax0, c0, initial_b, initial_n = TPI.create_tpi_params(**sim_params)
    ss_outputs['income_tax_params'] = income_tax_params
    ss_outputs['wealth_tax_params'] = wealth_tax_params
    ss_outputs['ellipse_params'] = ellipse_params
    ss_outputs['parameters'] = parameters
    ss_outputs['N_tilde'] = N_tilde
    ss_outputs['omega_stationary'] = omega_stationary
    ss_outputs['K0'] = K0
    ss_outputs['b_sinit'] = b_sinit
    ss_outputs['b_splus1init'] = b_splus1init
    ss_outputs['L0'] = L0
    ss_outputs['Y0'] = Y0
    ss_outputs['r0'] = r0
    ss_outputs['BQ0'] = BQ0
    ss_outputs['T_H_0'] = T_H_0
    ss_outputs['tax0'] = tax0
    ss_outputs['c0'] = c0
    ss_outputs['initial_b'] = initial_b
    ss_outputs['initial_n'] = initial_n
    ss_outputs['tau_bq'] = tau_bq
    ss_outputs['g_n_vector'] = g_n_vector
    ss_outputs['output_dir'] = input_dir

    with open("ss_outputs.pkl", 'wb') as fp:
        pickle.dump(ss_outputs, fp)

    w_path, r_path, T_H_path, BQ_path, Y_path = TPI.run_time_path_iteration(
        **ss_outputs)

    print "getting to here...."
    TPI.TP_solutions(w_path, r_path, T_H_path, BQ_path, **ss_outputs)
    print "took {0} seconds to get that part done.".format(time.time() - tick)
コード例 #44
0
ファイル: test_TPI.py プロジェクト: rickecon/OG-USA
def test_run_TPI():
    # Test TPI.run_TPI function.  Provide inputs to function and
    # ensure that output returned matches what it has been before.
    input_tuple = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/run_TPI_inputs.pkl'))
    (income_tax_params, tpi_params, iterative_params, small_open_params,
     initial_values, SS_values, fiscal_params, biz_tax_params,
     output_dir, baseline_spending) = input_tuple
    tpi_params = tpi_params + [True]
    initial_values = initial_values + (0.0,)

    p = Specifications()
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params

    new_param_values = {
        'J': J,
        'S': S,
        'T': T
    }
    # update parameters instance with new values for test
    p.update_specifications(new_param_values, raise_errors=False)
    (J, S, T, BW, p.beta, p.sigma, p.alpha, p.gamma, p.epsilon,
     Z, p.delta, p.ltilde, p.nu, p.g_y, p.g_n, tau_b, delta_tau,
     tau_payroll, tau_bq, p.rho, p.omega, N_tilde, lambdas,
     p.imm_rates, p.e, retire, p.mean_income_data, factor, h_wealth,
     p_wealth, m_wealth, p.b_ellipse, p.upsilon, p.chi_b, p.chi_n,
     theta, p.baseline) = tpi_params
    p.Z = np.ones(p.T + p.S) * Z
    p.tau_bq = np.ones(p.T + p.S) * 0.0
    p.tau_payroll = np.ones(p.T + p.S) * tau_payroll
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.h_wealth = np.ones(p.T + p.S) * h_wealth
    p.p_wealth = np.ones(p.T + p.S) * p_wealth
    p.m_wealth = np.ones(p.T + p.S) * m_wealth
    p.retire = (np.ones(p.T + p.S) * retire).astype(int)
    p.small_open, ss_firm_r, ss_hh_r = small_open_params
    p.ss_firm_r = np.ones(p.T + p.S) * ss_firm_r
    p.ss_hh_r = np.ones(p.T + p.S) * ss_hh_r
    p.maxiter, p.mindist_SS, p.mindist_TPI = iterative_params
    (p.budget_balance, alpha_T, alpha_G, p.tG1, p.tG2, p.rho_G,
     p.debt_ratio_ss) = fiscal_params
    p.alpha_T = np.concatenate((alpha_T, np.ones(40) * alpha_T[-1]))
    p.alpha_G = np.concatenate((alpha_G, np.ones(40) * alpha_G[-1]))
    (tau_b, delta_tau) = biz_tax_params
    p.tau_b = np.ones(p.T + p.S) * tau_b
    p.delta_tau = np.ones(p.T + p.S) * delta_tau
    p.analytical_mtrs, etr_params, mtrx_params, mtry_params =\
        income_tax_params
    p.etr_params = np.transpose(etr_params, (1, 0, 2))[:p.T, :, :]
    p.mtrx_params = np.transpose(mtrx_params, (1, 0, 2))[:p.T, :, :]
    p.mtry_params = np.transpose(mtry_params, (1, 0, 2))[:p.T, :, :]
    p.lambdas = lambdas.reshape(p.J, 1)
    p.output = output_dir
    p.baseline_spending = baseline_spending
    p.num_workers = 1
    (K0, b_sinit, b_splus1init, factor, initial_b, initial_n,
     p.omega_S_preTP, initial_debt, D0) = initial_values

    # Need to run SS first to get results
    ss_outputs = SS.run_SS(p, None)

    if p.baseline:
        utils.mkdirs(os.path.join(p.baseline_dir, "SS"))
        ss_dir = os.path.join(p.baseline_dir, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))
    else:
        utils.mkdirs(os.path.join(p.output_base, "SS"))
        ss_dir = os.path.join(p.output_base, "SS/SS_vars.pkl")
        pickle.dump(ss_outputs, open(ss_dir, "wb"))

    test_dict = TPI.run_TPI(p, None)

    expected_dict = utils.safe_read_pickle(
        os.path.join(CUR_PATH, 'test_io_data/run_TPI_outputs.pkl'))

    # delete values key-value pairs that are not in both dicts
    del test_dict['etr_path'], test_dict['mtrx_path'], test_dict['mtry_path']
    del test_dict['bmat_s']
    test_dict['b_mat'] = test_dict.pop('bmat_splus1')
    test_dict['REVENUE'] = test_dict.pop('total_revenue')
    test_dict['IITpayroll_revenue'] = (test_dict['REVENUE'][:160] -
                                       test_dict['business_revenue'])
    del test_dict['T_P'], test_dict['T_BQ'], test_dict['T_W']
    del test_dict['resource_constraint_error'], test_dict['T_C']
    del test_dict['r_gov'], test_dict['r_hh']

    for k, v in expected_dict.items():
        try:
            assert(np.allclose(test_dict[k], v, rtol=1e-04, atol=1e-04))
        except ValueError:
            assert(np.allclose(test_dict[k], v[:p.T, :, :], rtol=1e-04,
                               atol=1e-04))