コード例 #1
0
    def correct(self, cbvs=[1, 2], method='powell', options={}):
        """
        Correct the SAP_FLUX by fitting a number of cotrending basis vectors
        `cbvs`.

        Parameters
        ----------
        cbvs : list of ints
            The list of cotrending basis vectors to fit to the data. For example,
            [1, 2] will fit the first two basis vectors.
        method : str
            Numerical optimization method. See scipy.optimize.minimize for the
            full list of methods.
        options : dict
            Dictionary of options to be passed to scipy.optimize.minimize.
        """
        module, output = channel_to_module_output(self.lc_file.channel)
        cbv_file = pyfits.open(self.get_cbv_url())
        cbv_data = cbv_file['MODOUT_{0}_{1}'.format(module, output)].data

        cbv_array = []
        for i in cbvs:
            cbv_array.append(
                cbv_data.field(
                    'VECTOR_{}'.format(i))[self.lc_file.quality_mask])
        cbv_array = np.asarray(cbv_array)

        sap_lc = self.lc_file.SAP_FLUX
        median_sap_flux = np.nanmedian(sap_lc.flux)
        norm_sap_flux = sap_lc.flux / median_sap_flux - 1
        norm_err_sap_flux = sap_lc.flux_err / median_sap_flux

        def mean_model(*theta):
            coeffs = np.asarray(theta)
            return np.dot(coeffs, cbv_array)

        prior = self.prior(mean=np.zeros(len(cbvs)), var=16.)
        likelihood = self.likelihood(data=norm_sap_flux,
                                     mean=mean_model,
                                     var=norm_err_sap_flux)
        x0 = likelihood.fit(x0=prior.mean, method=method, options=options).x
        posterior = oktopus.Posterior(likelihood=likelihood, prior=prior)

        self._opt_result = posterior.fit(x0=x0, method=method, options=options)
        self._coeffs = self._opt_result.x
        flux_hat = sap_lc.flux - median_sap_flux * mean_model(self._coeffs)
        return LightCurve(time=sap_lc.time, flux=flux_hat.reshape(-1))
コード例 #2
0
ファイル: cbvcorrector.py プロジェクト: cosmicoder/lightkurve
    def correct(self, cbvs=(1, 2), method='powell', options=None):
        """
        Correct the SAP_FLUX by fitting a number of cotrending basis vectors
        `cbvs`.

        Parameters
        ----------
        cbvs : list of ints
            The list of cotrending basis vectors to fit to the data. For example,
            [1, 2] will fit the first two basis vectors.
        method : str
            Numerical optimization method. See scipy.optimize.minimize for the
            full list of methods.
        options : dict
            Dictionary of options to be passed to scipy.optimize.minimize.
        """
        if options is None:
            options = {}
        median_flux = np.nanmedian(self.lc.flux)
        norm_flux = self.lc.flux / median_flux - 1
        norm_err_flux = self.lc.flux_err / median_flux

        # Trim down to the right number of cbvs
        clip = np.in1d(np.arange(1, len(self.cbv_array) + 1), np.asarray(cbvs))
        time_clip = np.in1d(self.cbv_cadenceno, self.lc.cadenceno)

        def mean_model(*theta):
            coeffs = np.asarray(theta)
            return np.dot(coeffs, self.cbv_array[clip, :][:, time_clip])

        prior = self.prior(mean=np.zeros(len(cbvs)), var=16.)
        likelihood = self.likelihood(data=norm_flux,
                                     mean=mean_model,
                                     var=norm_err_flux)
        x0 = likelihood.fit(x0=prior.mean, method=method, options=options).x
        posterior = oktopus.Posterior(likelihood=likelihood, prior=prior)

        self._opt_result = posterior.fit(x0=x0, method=method, options=options)
        self._coeffs = self._opt_result.x
        flux_hat = self.lc.flux - median_flux * mean_model(self._coeffs)
        clc = self.lc.copy()
        clc.flux = flux_hat.reshape(-1)
        return clc
コード例 #3
0
    def correct(self, cbvs=[1, 2], method='powell', options={}):
        """
        Correct the SAP_FLUX by fitting a number of cotrending basis vectors
        `cbvs`.

        Parameters
        ----------
        cbvs : list of ints
            The list of cotrending basis vectors to fit to the data. For example,
            [1, 2] will fit the first two basis vectors.
        method : str
            Numerical optimization method. See scipy.optimize.minimize for the
            full list of methods.
        options : dict
            Dictionary of options to be passed to scipy.optimize.minimize.
        """
        cbv_array, _ = self._get_cbv_data(cbvs)

        sap_lc = self.lc_file.SAP_FLUX
        median_sap_flux = np.nanmedian(sap_lc.flux)
        norm_sap_flux = sap_lc.flux / median_sap_flux - 1
        norm_err_sap_flux = sap_lc.flux_err / median_sap_flux

        def mean_model(*theta):
            coeffs = np.asarray(theta)
            return np.dot(coeffs, cbv_array)

        prior = self.prior(mean=np.zeros(len(cbvs)), var=16.)
        likelihood = self.likelihood(data=norm_sap_flux,
                                     mean=mean_model,
                                     var=norm_err_sap_flux)
        x0 = likelihood.fit(x0=prior.mean, method=method, options=options).x
        posterior = oktopus.Posterior(likelihood=likelihood, prior=prior)

        self._opt_result = posterior.fit(x0=x0, method=method, options=options)
        self._coeffs = self._opt_result.x
        flux_hat = sap_lc.flux - median_sap_flux * mean_model(self._coeffs)
        return LightCurve(time=sap_lc.time,
                          flux=flux_hat.reshape(-1),
                          flux_err=sap_lc.flux_err)