コード例 #1
0
def test_data():
    arr = [float(val) for val in range(25)]
    arr_int = [int(val % 4) for val in range(25)]

    proj = omf.Project()

    surf = omf.SurfaceElement(
        geometry=omf.SurfaceGridGeometry(
            tensor_u=[1., 1., 1., 1., 1.],
            tensor_v=[1., 1., 1., 1., 1.],
        ),
        data=[
            omf.ScalarData(name='my data',
                           description='my desc',
                           location='faces',
                           array=arr,
                           colormap=omf.ScalarColormap(
                               gradient=[
                                   'red',
                                   'blue',
                                   'black',
                                   'orange',
                               ] * 32,
                               limits=[min(arr), max(arr)],
                           )),
            omf.MappedData(
                name='my data',
                description='my desc',
                location='faces',
                array=arr_int,
                legends=[
                    omf.Legend(values=[
                        'yellow',
                        'black',
                        'brown',
                        'green',
                    ], ),
                    omf.Legend(values=[
                        'yellow!',
                        'black!!',
                        'brown!!!',
                        'green!!!!',
                    ], ),
                ],
            )
        ],
    )
    proj.elements = [surf]
    proj.validate()
    view = get_view_from_proj(proj)
    view.validate()
    assert len(view.contents) == 9
コード例 #2
0
 def to_omf(self, cell_location):
     self.validate()
     if self.location == 'nodes':
         location = 'vertices'
     else:
         location = cell_location
     omf_data = omf.ScalarData(
         name=self.name or '',
         description=self.description or '',
         location=location,
         array=self.array.array,
     )
     return omf_data
コード例 #3
0
        def test_from_omf(self):
            omf_element = omf.VolumeElement(
                name="vol_ir",
                geometry=omf.VolumeGridGeometry(
                    axis_u=[1, 1, 0],
                    axis_v=[0, 0, 1],
                    axis_w=[1, -1, 0],
                    tensor_u=np.ones(10).astype(float),
                    tensor_v=np.ones(15).astype(float),
                    tensor_w=np.ones(20).astype(float),
                    origin=[10.0, 10.0, -10],
                ),
                data=[
                    omf.ScalarData(
                        name="Random Data",
                        location="cells",
                        array=np.random.rand(10, 15, 20).flatten(),
                    )
                ],
            )

            # Make a discretize mesh
            mesh, models = discretize.TensorMesh.from_omf(omf_element)

            geom = omf_element.geometry
            # Check geometry
            self.assertEqual(mesh.nC, geom.num_cells)
            self.assertEqual(mesh.nN, geom.num_nodes)
            self.assertTrue(np.allclose(mesh.hx, geom.tensor_u))
            self.assertTrue(np.allclose(mesh.hy, geom.tensor_v))
            self.assertTrue(np.allclose(mesh.hz, geom.tensor_w))
            self.assertTrue(np.allclose(mesh.axis_u, geom.axis_u))
            self.assertTrue(np.allclose(mesh.axis_v, geom.axis_v))
            self.assertTrue(np.allclose(mesh.axis_w, geom.axis_w))
            self.assertTrue(np.allclose(mesh.x0, geom.origin))

            # Check data arrays
            self.assertEqual(len(models.keys()), len(omf_element.data))
            for i in range(len(omf_element.data)):
                name = list(models.keys())[i]
                scalar_data = omf_element.data[i]
                self.assertEqual(name, scalar_data.name)
                arr = ravel_data_array(
                    models[name],
                    len(geom.tensor_u),
                    len(geom.tensor_v),
                    len(geom.tensor_w),
                )
                self.assertTrue(np.allclose(np.array(scalar_data.array), arr))
コード例 #4
0
ファイル: data.py プロジェクト: Geostatistic/steno3dpy
 def _to_omf(self):
     if self.order != 'c':
         raise ValueError('OMF data must be "c" order')
     import omf
     data = omf.ScalarData(
         name=self.title or '',
         description=self.description or '',
         array=omf.ScalarArray(self.array),
     )
     if self.colormap:
         data.colormap = omf.ScalarColormap(
             gradient=omf.ColorArray(self.colormap, ),
             limits=[np.min(self.array),
                     np.max(self.array)],
         )
     return data
コード例 #5
0
ファイル: element_test.py プロジェクト: kthnyt/omfvista
import tempfile

import numpy as np
import omf
import omfvista
import pyvista

PROJECT = omf.Project(name='Test project',
                      description='Just some assorted elements')
POINTSET = omf.PointSetElement(
    name='Random Points',
    description='Just random points',
    geometry=omf.PointSetGeometry(vertices=np.random.rand(100, 3)),
    data=[
        omf.ScalarData(name='rand data',
                       array=np.random.rand(100),
                       location='vertices'),
        omf.ScalarData(name='More rand data',
                       array=np.random.rand(100),
                       location='vertices')
    ],
    #                           textures=[
    #                                   omf.ImageTexture(
    #                                           name='test image',
    #                                           image='test_image.png',
    #                                           origin=[0, 0, 0],
    #                                           axis_u=[1, 0, 0],
    #                                           axis_v=[0, 1, 0]
    #                                           ),
    #                                   omf.ImageTexture(
    #                                           name='test image',
コード例 #6
0
    def _tensor_mesh_to_omf(mesh, models=None):
        """
        Constructs an :class:`omf.VolumeElement` object of this tensor mesh and
        the given models as cell data of that grid.

        Parameters
        ----------

        mesh : discretize.TensorMesh
            The tensor mesh to convert to a :class:`omf.VolumeElement`

        models : dict(numpy.ndarray)
            Name('s) and array('s). Match number of cells

        """
        if models is None:
            models = {}
        # Make the geometry
        geometry = omf.VolumeGridGeometry()
        # Set tensors
        tensors = mesh.h
        if len(tensors) < 1:
            raise RuntimeError(
                "Your mesh is empty... fill it out before converting to OMF")
        elif len(tensors) == 1:
            geometry.tensor_u = tensors[0]
            geometry.tensor_v = np.array([
                0.0,
            ])
            geometry.tensor_w = np.array([
                0.0,
            ])
        elif len(tensors) == 2:
            geometry.tensor_u = tensors[0]
            geometry.tensor_v = tensors[1]
            geometry.tensor_w = np.array([
                0.0,
            ])
        elif len(tensors) == 3:
            geometry.tensor_u = tensors[0]
            geometry.tensor_v = tensors[1]
            geometry.tensor_w = tensors[2]
        else:
            raise RuntimeError("This mesh is too high-dimensional for OMF")
        # Set rotation axes
        geometry.axis_u = mesh.axis_u
        geometry.axis_v = mesh.axis_v
        geometry.axis_w = mesh.axis_w
        # Set the origin
        geometry.origin = mesh.origin
        # Make sure the geometry is built correctly
        geometry.validate()
        # Make the volume elemet (the OMF object)
        omfmesh = omf.VolumeElement(geometry=geometry, )
        # Add model data arrays onto the cells of the mesh
        omfmesh.data = []
        for name, arr in models.items():
            data = omf.ScalarData(
                name=name,
                array=ravel_data_array(arr, *mesh.shape_cells),
                location="cells",
            )
            omfmesh.data.append(data)
        # Validate to make sure a proper OMF object is returned to the user
        omfmesh.validate()
        return omfmesh
コード例 #7
0
###############################################################################
omfvista.wrap(opal_mound_fault).plot(show_edges=False)

###############################################################################

# temp_175c: '175C_vertices.csv'
description='vertices of meshed/interpolated surfaces of the ' \
    'interpolated temperature isosurfaces for 175 degrees C used ' \
    'in the Phase 2B earth model. All data are georeferenced to ' \
    'UTM, zone 12N, NAD 83, NAVD 88.'

temp_175c = gdc19.surf_to_omf('175C_vertices.csv', 'temp_175c', description)
temp_175c.data = [
    omf.ScalarData(name='constant temperature value of 175 for surface',
                   array=np.full(temp_175c.geometry.num_nodes, 175.),
                   location='vertices'),
]
temp_175c.validate()
###############################################################################

omfvista.wrap(temp_175c).plot(show_edges=False)

###############################################################################

# temp_225c: '225C_vertices.csv'
description='vertices of meshed/interpolated surfaces of the '\
    'interpolated temperature isosurfaces for 225 degrees C used '\
    'in the Phase 2B earth model. All data are georeferenced to ' \
    'UTM, zone 12N, NAD 83, NAVD 88.'
コード例 #8
0
###############################################################################
temperature = omf.PointSetElement(
    name='temperature',
    description='cumulative record of one-dimensional temperature modeling '\
        'based off of well data. Temperature log data were exampled and '\
        'extrapolated below the bottom of a number of wells. Temperatures '\
        'are in degrees Celsius, and all location data are georeferenced to '
        'UTM, zone 12N, NAD 83, NAVD 88.',
    subtype='point',
    geometry=omf.PointSetGeometry(
        vertices=_temp[['x', 'y', 'z']].values
    ),
    data=[omf.ScalarData(
        name='temperature (C)',
        array=_temp['T'].values,
        location='vertices'
    ),]
)
temperature.validate()

###############################################################################
omfvtk.wrap(temperature).plot(show_edges=False)

###############################################################################
# Geostatistical Model
# ++++++++++++++++++++
#
# Load the kriged temperature model

fkrig = gdc19.get_krig_path("Geotherm_kriged_0.sgems")
コード例 #9
0
    def test_doc_ex(self):
        dirname, _ = os.path.split(os.path.abspath(__file__))
        pngfile = os.path.sep.join(dirname.split(os.path.sep)[:-1] +
                                   ['docs', 'images', 'PointSetGeometry.png'])

        proj = omf.Project(
            name='Test project',
            description='Just some assorted elements'
        )

        pts = omf.PointSetElement(
            name='Random Points',
            description='Just random points',
            geometry=omf.PointSetGeometry(
                vertices=np.random.rand(100, 3)
            ),
            data=[
                omf.ScalarData(
                    name='rand data',
                    array=np.random.rand(100),
                    location='vertices'
                ),
                omf.ScalarData(
                    name='More rand data',
                    array=np.random.rand(100),
                    location='vertices'
                )
            ],
            textures=[
                omf.ImageTexture(
                    name='test image',
                    image=pngfile,
                    origin=[0, 0, 0],
                    axis_u=[1, 0, 0],
                    axis_v=[0, 1, 0]
                ),
                omf.ImageTexture(
                    name='test image',
                    image=pngfile,
                    origin=[0, 0, 0],
                    axis_u=[1, 0, 0],
                    axis_v=[0, 0, 1]
                )
            ],
            color='green'
        )

        lin = omf.LineSetElement(
            name='Random Line',
            geometry=omf.LineSetGeometry(
                vertices=np.random.rand(100, 3),
                segments=np.floor(np.random.rand(50, 2)*100).astype(int)
            ),
            data=[
                omf.ScalarData(
                    name='rand vert data',
                    array=np.random.rand(100),
                    location='vertices'
                ),
                omf.ScalarData(
                    name='rand segment data',
                    array=np.random.rand(50),
                    location='segments'
                )
            ],
            color='#0000FF'
        )

        surf = omf.SurfaceElement(
            name='trisurf',
            geometry=omf.SurfaceGeometry(
                vertices=np.random.rand(100, 3),
                triangles=np.floor(np.random.rand(50, 3)*100).astype(int)
            ),
            data=[
                omf.ScalarData(
                    name='rand vert data',
                    array=np.random.rand(100),
                    location='vertices'
                ),
                omf.ScalarData(
                    name='rand face data',
                    array=np.random.rand(50),
                    location='faces'
                )
            ],
            color=[100, 200, 200]
        )

        grid = omf.SurfaceElement(
            name='gridsurf',
            geometry=omf.SurfaceGridGeometry(
                tensor_u=np.ones(10).astype(float),
                tensor_v=np.ones(15).astype(float),
                origin=[50., 50., 50.],
                axis_u=[1., 0, 0],
                axis_v=[0, 0, 1.],
                offset_w=np.random.rand(11, 16).flatten()
            ),
            data=[
                omf.ScalarData(
                    name='rand vert data',
                    array=np.random.rand(11, 16).flatten(),
                    location='vertices'
                ),
                omf.ScalarData(
                    name='rand face data',
                    array=np.random.rand(10, 15).flatten(order='f'),
                    location='faces'
                )
            ],
            textures=[
                omf.ImageTexture(
                    name='test image',
                    image=pngfile,
                    origin=[2., 2., 2.],
                    axis_u=[5., 0, 0],
                    axis_v=[0, 2., 5.]
                )
            ]
        )

        vol = omf.VolumeElement(
            name='vol',
            geometry=omf.VolumeGridGeometry(
                tensor_u=np.ones(10).astype(float),
                tensor_v=np.ones(15).astype(float),
                tensor_w=np.ones(20).astype(float),
                origin=[10., 10., -10]
            ),
            data=[
                omf.ScalarData(
                    name='Random Data',
                    location='cells',
                    array=np.random.rand(10, 15, 20).flatten()
                )
            ]
        )

        proj.elements = [pts, lin, surf, grid, vol]

        assert proj.validate()

        serial_file = os.path.sep.join([dirname, 'out.omf'])
        omf.OMFWriter(proj, serial_file)
        reader = omf.OMFReader(serial_file)
        new_proj = reader.get_project()

        assert new_proj.validate()
        assert str(new_proj.elements[3].textures[0].uid) == \
            str(proj.elements[3].textures[0].uid)
        del reader
        os.remove(serial_file)