def test_OmniglotClass(): import cv2 root = './data/' dataset = Omniglot(root=root, download=True) #dataset = Omniglot(root=root,background=False,download=True) print(len(dataset)) idx = 0 idx_alphabet = 0 idx_character = 0 idx_sample = 0 sample = dataset.getSample(idx_alphabet, idx_character, idx_sample) image_path = dataset.sampleSample4Character4Alphabet( idx_alphabet, idx_character, idx_sample) changed = False while True: #sample = dataset[idx] img = np.array(sample[0]) cv2.imshow('test', img) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('n'): idx += 1 print(image_path) idx_sample += 1 changed = True elif key == ord('a'): idx += 1 print(image_path) idx_alphabet += 1 idx_character = 0 idx_sample = 0 changed = True elif key == ord('c'): idx += 1 print(image_path) idx_character += 1 idx_sample = 0 changed = True if changed: changed = False sample = dataset.getSample(idx_alphabet, idx_character, idx_sample) image_path = dataset.sampleSample4Character4Alphabet( idx_alphabet, idx_character, idx_sample)
def test_Omniglot(): import cv2 root = './data/' dataset = Omniglot(root=root, download=True) #dataset = Omniglot(root=root,background=False,download=True) print(len(dataset)) idx = 0 idx_alphabet = 0 idx_character = 0 idx_sample = 0 while True: sample = dataset[idx] image_path = dataset.sampleSample4Character4Alphabet( idx_alphabet, idx_character, idx_sample) img = np.array(sample[0]) cv2.imshow('test', img) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('n'): idx += 1 #print(sample[1]) print(image_path) idx_sample += 1 print("next image")
def test_OmniglotTask(): import cv2 root = './data/' dataset = Omniglot(root=root, download=True) #dataset = Omniglot(root=root,background=False,download=True) print(len(dataset)) idx_alphabet = 0 idx_sample = 0 #task, nbrCharacter4Task, nbrSample4Task = dataset.generateFewShotLearningTask( alphabet_idx=idx_alphabet) task, nbrCharacter4Task, nbrSample4Task = dataset.generateIterFewShotLearningTask( alphabet_idx=idx_alphabet) sample = dataset.getSample(task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) changed = False taskChanged = False idx = 0 while True: #sample = dataset[idx] img = np.array(sample[0]) cv2.imshow('test', img) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('n'): idx += 1 idx_sample = (idx_sample + 1) % len(task) changed = True elif key == ord('a'): idx_alphabet += 1 idx_character = 0 idx_sample = 0 taskChanged = True if changed: changed = False sample = dataset.getSample(task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) print(image_path, '/{}'.format(nbrCharacter4Task)) print('Sample {} / {}'.format(idx, nbrSample4Task)) if taskChanged: taskChanged = False idx = 0 task, nbrCharacter4Task, nbrSample4Task = dataset.generateFewShotLearningTask( alphabet_idx=idx_alphabet) sample = dataset.getSample(task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( task[idx_sample]['alphabet'], task[idx_sample]['character'], task[idx_sample]['sample']) print(image_path, '/{}'.format(nbrCharacter4Task))
def test_OmniglotSeq(): import cv2 root = './data/' h = 240 w = 240 dataset = Omniglot(root=root, h=h, w=w) #dataset = Omniglot(root=root,background=False,download=True) print(len(dataset)) idx_alphabet = 0 idx_sample = 0 seq, nbrCharacter4Task, nbrSample4Task = dataset.generateIterFewShotInputSequence( alphabet_idx=idx_alphabet) sample = dataset.getSample(seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) changed = False seqChanged = False idx = 0 while True: #sample = dataset[idx] img = (sample['image'].numpy() * 255).transpose((1, 2, 0)) cv2.imshow('test', img) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord('n'): idx += 1 idx_sample = (idx_sample + 1) % len(seq) changed = True elif key == ord('a'): idx_alphabet += 1 idx_character = 0 idx_sample = 0 seqChanged = True if changed: changed = False sample = dataset.getSample(seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) print(image_path, '/{}'.format(nbrCharacter4Task)) print('Sample {} / {}'.format(idx, nbrSample4Task)) print('Target :{}'.format(seq[idx_sample]['target'])) if seqChanged: seqChanged = False idx = 0 seq, nbrCharacter4Task, nbrSample4Task = dataset.generateFewShotLearningTask( alphabet_idx=idx_alphabet) sample = dataset.getSample(seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) image_path = dataset.sampleSample4Character4Alphabet( seq[idx_sample]['alphabet'], seq[idx_sample]['character'], seq[idx_sample]['sample']) print(image_path, '/{}'.format(nbrCharacter4Task))