コード例 #1
0
def rebuild_shm_parameter(shm, shape, dtype, requires_grad):
    def delete_shm():
        shm.close()
        shm.unlink()

    arr = np.ndarray(shape, dtype=dtype, buffer=shm.buf)
    t = flow.from_numpy(arr)
    t._register_storage_delete_hook(delete_shm)
    return Parameter(t, requires_grad=requires_grad)
コード例 #2
0
ファイル: test_from_numpy.py プロジェクト: zzk0/oneflow
    def test_same_data(test_case):
        np_arr = np.random.randn(3, 4, 5)
        tensor = flow.from_numpy(np_arr)
        test_case.assertTrue(np.array_equal(np_arr, tensor.numpy()))
        test_case.assertEqual(tensor.size(), (3, 4, 5))
        test_case.assertEqual(tensor.stride(), (20, 5, 1))
        test_case.assertEqual(tensor.storage_offset(), 0)

        np_arr[1:2, 2:3, 3:4] = random.random()
        test_case.assertTrue(np.array_equal(np_arr, tensor.numpy()))
コード例 #3
0
def as_tensor(data, dtype=None, device=None):
    if flow.is_tensor(data):
        if dtype is None:
            dtype = data.dtype
        if device is None:
            device = data.device
        if data.dtype is dtype and data.device is device:
            return data
        else:
            data = data.to(dtype=dtype, device=device)
    elif isinstance(data, (np.ndarray)):
        if dtype is None:
            if (device is None) or (device.type == "cpu"):
                data = flow.from_numpy(data)
            else:
                data = flow.tensor(data, device=device)
        else:
            if data.dtype in numpy_dtype_to_oneflow_dtype_dict:
                data_infer_flow_type = numpy_dtype_to_oneflow_dtype_dict[
                    data.dtype]
            else:
                raise TypeError(
                    "numpy-ndarray holds elements of unsupported datatype")
            if data_infer_flow_type is dtype:
                if (device is None) or (device.type == "cpu"):
                    data = flow.from_numpy(data)
                else:
                    data = flow.tensor(data, dtype=dtype, device=device)
            else:
                if (device is None) or (device.type == "cpu"):
                    data = flow.tensor(data, dtype=dtype)
                else:
                    data = flow.tensor(data, dtype=dtype, device=device)
    else:
        # handle tuple, list, scalar
        data = np.array(data)
        # not shared memory in this case
        data = flow.tensor(data)
        if device is not None:
            data = data.to(device)
        if dtype is not None:
            data = data.to(dtype)
    return data
コード例 #4
0
def _test_rnn_utils_pack_padded_sequence(test_case, device):
    input_size = random.randint(10, 200)
    max_seq_len = random.randint(10, 500)
    batch_size = random.randint(10, 500)
    padded_inputs = np.zeros((max_seq_len, batch_size, input_size))
    lengths = []
    lengths.append(max_seq_len)
    for i in range(batch_size - 1):
        lengths.append(random.randint(1, max_seq_len))
    lengths.sort(reverse=True)

    for i in range(batch_size):
        padded_inputs[0:lengths[i], i:i + 1, :] = i + 1

    inputs = flow.from_numpy(padded_inputs).to(device)
    flow_res = flow_rnn_utils.pack_padded_sequence(inputs, lengths)

    torch_inputs = torch.from_numpy(padded_inputs).to(device)
    torch_res = torch_rnn_utils.pack_padded_sequence(torch_inputs, lengths)

    test_case.assertTrue(
        np.allclose(
            torch_res.batch_sizes.cpu().detach().numpy(),
            flow_res.batch_sizes.cpu().detach().numpy(),
            atol=1e-8,
        ))

    test_case.assertTrue(
        np.allclose(
            torch_res.data.cpu().detach().numpy(),
            flow_res.data.cpu().detach().numpy(),
            atol=1e-8,
        ))

    torch_seq_unpacked, torch_lens_unpacked = torch_rnn_utils.pad_packed_sequence(
        torch_res, batch_first=False)
    flow_seq_unpacked, flow_lens_unpacked = flow_rnn_utils.pad_packed_sequence(
        flow_res, batch_first=False)

    test_case.assertTrue(
        np.allclose(
            torch_seq_unpacked.cpu().detach().numpy(),
            flow_seq_unpacked.cpu().detach().numpy(),
            atol=1e-8,
        ))

    test_case.assertTrue(
        np.allclose(
            torch_lens_unpacked.cpu().detach().numpy(),
            flow_lens_unpacked.cpu().detach().numpy(),
            atol=1e-8,
        ))
コード例 #5
0
def as_tensor(data, dtype=None, device=None):
    if flow.is_tensor(data):
        if dtype is None:
            dtype = data.dtype
        if device is None:
            device = data.device
        if data.dtype is dtype and data.device is device:
            return data
        else:
            data = data.to(dtype=dtype, device=device)
    elif isinstance(data, (np.ndarray)):
        if dtype is None:
            if (device is None) or (device.type == "cpu"):
                data = flow.from_numpy(data)
            else:
                data = flow.tensor(data, device=device)
        else:
            data_infer_flow_type = flow.framework.dtype.convert_numpy_dtype_to_oneflow_dtype(
                data.dtype
            )
            if data_infer_flow_type is dtype:
                if (device is None) or (device.type == "cpu"):
                    data = flow.from_numpy(data)
                else:
                    data = flow.tensor(data, dtype=dtype, device=device)
            else:
                if (device is None) or (device.type == "cpu"):
                    data = flow.tensor(data, dtype=dtype)
                else:
                    data = flow.tensor(data, dtype=dtype, device=device)
    else:
        # not shared memory in this case
        data = flow.tensor(data)
        if device is not None:
            data = data.to(device)
        if dtype is not None:
            data = data.to(dtype)
    return data
コード例 #6
0
def rebuild_shm_tensor(shm, shape, dtype, requires_grad):
    def delete_shm():
        shm.close()
        try:
            shm.unlink()
        except:
            pass

    arr = np.ndarray(shape, dtype=dtype, buffer=shm.buf)
    t = flow.from_numpy(arr)
    t._register_storage_delete_hook(delete_shm)
    t.requires_grad = requires_grad

    return t
コード例 #7
0
ファイル: test_from_numpy.py プロジェクト: zzk0/oneflow
 def test_more_dtype(test_case):
     for dtype in [
             np.float64,
             np.float32,
             np.float16,
             np.int64,
             np.int32,
             np.int8,
             np.uint8,
     ]:
         np_arr = np.ones((2, 3), dtype=dtype)
         tensor = flow.from_numpy(np_arr)
         # TODO(wyg): oneflow.float16 do not support to copy from tensor to numpy
         if tensor.dtype not in [flow.float16]:
             test_case.assertTrue(np.array_equal(np_arr, tensor.numpy()))
コード例 #8
0
ファイル: test_from_numpy.py プロジェクト: zzk0/oneflow
 def test_use_ops(test_case):
     np_arr = np.random.randn(3, 4, 5)
     tensor = flow.from_numpy(np_arr)
     res = tensor**2
     test_case.assertTrue(np.allclose(np_arr**2, res.numpy()))
コード例 #9
0
ファイル: from_oneflow.py プロジェクト: chenghanpeng/tvm
class_url = "".join([
    "https://raw.githubusercontent.com/Cadene/",
    "pretrained-models.pytorch/master/data/",
    "imagenet_classes.txt",
])
class_name = "imagenet_classes.txt"
class_path = download_testdata(class_url, class_name, module="data")
with open(class_path) as f:
    class_id_to_key = f.readlines()

class_id_to_key = [x.strip() for x in class_id_to_key]

# Get top-1 result for TVM
top1_tvm = np.argmax(tvm_output.numpy()[0])
tvm_class_key = class_id_to_key[top1_tvm]

# Convert input to OneFlow variable and get OneFlow result for comparison
with flow.no_grad():
    torch_img = flow.from_numpy(img)
    output = model(torch_img)

    # Get top-1 result for OneFlow
    top_oneflow = np.argmax(output.numpy())
    oneflow_class_key = class_id_to_key[top_oneflow]

print("Relay top-1 id: {}, class name: {}".format(
    top1_tvm, key_to_classname[tvm_class_key]))
print("OneFlow top-1 id: {}, class name: {}".format(
    top_oneflow, key_to_classname[oneflow_class_key]))
コード例 #10
0
 def test_non_contiguous_input(test_case):
     np_arr = np.random.randn(4, 5)
     np_arr = np_arr.transpose(1, 0)
     tensor = flow.from_numpy(np_arr)
     # TODO(wyg): support non-contiguous input
     test_case.assertTrue(tensor.is_contiguous())
コード例 #11
0
def np_to_global(np):
    t = flow.from_numpy(np)
    return t.to_global(placement=flow.env.all_device_placement("cpu"),
                       sbp=flow.sbp.broadcast)