コード例 #1
0
 def _execute_pb_data(
     cls,
     model_dir: str,
     prepared_model: BackendRep,
     result_rtol: float,
     result_atol: float,
 ) -> int:
     executed_tests = 0
     for test_data_dir in model_dir.glob("test_data_set*"):
         inputs = []
         inputs_num = len(list(test_data_dir.glob("input_*.pb")))
         for i in range(inputs_num):
             input_file = Path(test_data_dir) / "input_{}.pb".format(i)
             tensor = onnx.TensorProto()
             with open(input_file, "rb") as f:
                 tensor.ParseFromString(f.read())
             inputs.append(numpy_helper.to_array(tensor))
         ref_outputs = []
         ref_outputs_num = len(list(test_data_dir.glob("output_*.pb")))
         for i in range(ref_outputs_num):
             output_file = Path(test_data_dir) / "output_{}.pb".format(i)
             tensor = onnx.TensorProto()
             with open(output_file, "rb") as f:
                 tensor.ParseFromString(f.read())
             ref_outputs.append(numpy_helper.to_array(tensor))
         if (len(inputs) == 0):
             continue
         outputs = list(prepared_model.run(inputs))
         cls.assert_similar_outputs(ref_outputs, outputs, result_rtol,
                                    result_atol)
         executed_tests = executed_tests + 1
     return executed_tests
コード例 #2
0
 def _execute_npz_data(
     cls, model_dir: str, prepared_model: BackendRep, result_rtol: float, result_atol: float,
 ) -> None:
     for test_data_npz in glob.glob(os.path.join(model_dir, "test_data_*.npz")):
         test_data = np.load(test_data_npz, encoding="bytes")
         inputs = list(test_data["inputs"])
         outputs = list(prepared_model.run(inputs))
         ref_outputs = test_data["outputs"]
         cls.assert_similar_outputs(ref_outputs, outputs, result_rtol, result_atol)
コード例 #3
0
 def _execute_npz_data(
     cls,
     model_dir: str,
     prepared_model: BackendRep,
     result_rtol: float,
     result_atol: float,
 ) -> int:
     executed_tests = 0
     for test_data_npz in model_dir.glob("test_data_*.npz"):
         test_data = np.load(test_data_npz, encoding="bytes")
         inputs = list(test_data["inputs"])
         outputs = list(prepared_model.run(inputs))
         ref_outputs = test_data["outputs"]
         cls.assert_similar_outputs(ref_outputs, outputs, result_rtol,
                                    result_atol)
         executed_tests = executed_tests + 1
     return executed_tests
コード例 #4
0
ファイル: model_importer.py プロジェクト: yury-intel/openvino
 def _execute_npz_data(
     cls,
     model_dir: str,
     prepared_model: BackendRep,
     result_rtol: float,
     result_atol: float,
     post_processing: Callable[[Sequence[Any]],
                               Sequence[Any]] = None) -> int:
     executed_tests = 0
     for test_data_npz in model_dir.glob("test_data_*.npz"):
         test_data = np.load(test_data_npz, encoding="bytes")
         inputs = list(test_data["inputs"])
         outputs = list(prepared_model.run(inputs))
         ref_outputs = test_data["outputs"]
         if post_processing is not None:
             outputs = post_processing(outputs)
         cls.assert_similar_outputs(ref_outputs, outputs, result_rtol,
                                    result_atol)
         executed_tests = executed_tests + 1
     return executed_tests
コード例 #5
0
 def _execute_pb_data(
     cls, model_dir: str, prepared_model: BackendRep, result_rtol: float, result_atol: float,
 ) -> None:
     for test_data_dir in glob.glob(os.path.join(model_dir, "test_data_set*")):
         inputs = []
         inputs_num = len(glob.glob(os.path.join(test_data_dir, "input_*.pb")))
         for i in range(inputs_num):
             input_file = os.path.join(test_data_dir, "input_{}.pb".format(i))
             tensor = onnx.TensorProto()
             with open(input_file, "rb") as f:
                 tensor.ParseFromString(f.read())
             inputs.append(numpy_helper.to_array(tensor))
         ref_outputs = []
         ref_outputs_num = len(glob.glob(os.path.join(test_data_dir, "output_*.pb")))
         for i in range(ref_outputs_num):
             output_file = os.path.join(test_data_dir, "output_{}.pb".format(i))
             tensor = onnx.TensorProto()
             with open(output_file, "rb") as f:
                 tensor.ParseFromString(f.read())
             ref_outputs.append(numpy_helper.to_array(tensor))
         outputs = list(prepared_model.run(inputs))
         cls.assert_similar_outputs(ref_outputs, outputs, result_rtol, result_atol)