コード例 #1
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def maxpool_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
                Y = MAXPOOL(X) (Using padding, stride and pool kernel size)
                --> Propagate maximum value in the kernel window
    """

    x_io = node.inputs["X"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    stride = (
        node.get_attr("strides"))[0]  # Assuming same stride in all directions
    padding = (
        node.get_attr("pads"))[0]  # Assuming same padding in all directions
    kernel_shape = node.get_attr("kernel_shape")

    def fn():
        with cupy.cuda.Device(node.device_id):
            cupy.cudnn.pooling_forward(
                x,
                y,
                (kernel_shape[0], kernel_shape[1]),
                (stride, stride),
                (padding, padding),
                cupy.cuda.cudnn.CUDNN_POOLING_MAX,
            )

    return fn
コード例 #2
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def gemm_cpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
                Y = alpha*(X @ W) + beta*b
    """

    x_io = node.inputs["A"]
    w_io = node.inputs["B"]
    b_io = node.inputs["C"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    w = w_io.get_data(alloc_map)
    b = b_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    alpha = node.get_attr("alpha", 1.0)
    beta = node.get_attr("beta", 1.0)
    transX = node.get_attr("transA", 0)
    transW = node.get_attr("transB", 0)

    def fn():
        if transX == 1:
            xt = chainer.functions.transpose(x)
        else:
            xt = x
        if transW == 1:
            wt = w
        else:
            wt = chainer.functions.transpose(w)

        np.copyto(y,
                  chainer.functions.linear(alpha * xt, wt, b=(beta * b)).array)

    return fn
コード例 #3
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def average_pool_gpu(node: Node, alloc_map,
                     config: Config) -> Callable[[], None]:
    """
        Function:
                Y = AVERAGE_POOL(X)
            --> CONVE NCHW to NC11 (Average on HW dimensions)
    """

    x_io = node.inputs["X"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    kernel_size = node.get_attr("kernel_shape")
    padding = node.get_attr("pads", [0])[0]
    stride = node.get_attr("strides", [1])[0]

    def fn():
        with cupy.cuda.Device(node.device_id):
            out = chainer.functions.average_pooling_2d(x,
                                                       kernel_size,
                                                       stride=stride,
                                                       pad=padding).array
            cupy.copyto(y, out)

    return fn
コード例 #4
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def batchnorm_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
                Y = gamma * x_hat + beta
                        where:
                                x_hat = (x - r_mean)/sqrt(r_variance + epsilon)
                        & r_mean and r_variance are running mean & variance

                                r_mean = momentum * training_mean + (1 - momentum) * calculated mean
                                r_variance = momentum * training_variance + (1 - momentum) * calculated variance
    """

    x_io = node.inputs["X"]
    gamma_io = node.inputs["scale"]
    beta_io = node.inputs["B"]
    mean_io = node.inputs["mean"]
    var_io = node.inputs["var"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    gamma = gamma_io.get_data(alloc_map)
    beta = beta_io.get_data(alloc_map)
    mean = mean_io.get_data(alloc_map)
    var = var_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    epsilon = node.get_attr("epsilon")
    momentum = node.get_attr("momentum")
    spatial = node.get_attr("spatial")
    if epsilon < 1e-05:
        epsilon = 1e-05

    # modeled off of the chainer support

    def fn():
        with cupy.cuda.Device(node.device_id):

            #This is a hack to avoid the device to device copy stuck on the default stream
            cupy.add(cupy.cudnn.batch_normalization_forward_inference(
                x, gamma, beta, mean, var, epsilon, True,
                cupy.cuda.cudnn.CUDNN_BATCHNORM_SPATIAL),
                     0,
                     out=y)

            #cupy.copyto(
            #    y,
            #    chainer.functions.fixed_batch_normalization(
            #        x, gamma, beta, mean, var, eps=epsilon
            #    ).array,
            #)

    return fn
コード例 #5
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def conv_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        GPU Function:
                Y = X CONV W (Using padding, stride and dilaton attribute
    """
    x_io = node.inputs["X"]
    w_io = node.inputs["W"]
    b_io = node.get_input("B")
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    w = w_io.get_data(alloc_map)
    b = b_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    stride = node.get_attr("strides")[
        0]  # Assuming same stride in all directions
    padding = node.get_attr("pads")[
        0]  # Assuming same padding in all directions
    dilations = node.get_attr("dilations")[
        0]  # Assuming same padding in all directions
    groups = node.get_attr("group", 1)

    stride = (stride, stride)
    padding = (padding, padding)
    dilations = (dilations, dilations)

    def fn():
        # time_st = datetime.datetime.now()
        # logging.log(logging.INFO, f"CONVOP got -->  {x[-1]} CONVOP")

        with cupy.cuda.Device(node.device_id):

            cupy.cudnn.convolution_forward(x,
                                           w,
                                           b,
                                           y,
                                           padding,
                                           stride,
                                           dilations,
                                           groups,
                                           auto_tune=False,
                                           tensor_core='auto')

        # time_end = datetime.datetime.now()
        # logging.log(logging.INFO, f"TIMER: <{node.operator},{node.node_id}> {time_st} -> {time_end}")
        # logging.log(logging.INFO, f"CONV sent -->  {y[-1]} CONV")

    return fn
コード例 #6
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def clip_v6_cpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:

    input_io = node.inputs["input"]
    min_v = node.get_attr("min", -3.402823e38)
    max_v = node.get_attr("max", 3.402823e38)

    output_io = node.outputs["output"]

    inp = input_io.get_data(alloc_map)
    output = output_io.get_data(alloc_map)

    def fn():
        np.copyto(output, chainer.functions.clip(inp, min_v, max_v).array)

    return fn
コード例 #7
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def batchnorm_cpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
        Y = gamma * x_hat + beta
        where:
            x_hat = (x - r_mean)/sqrt(r_variance + epsilon)
        & r_mean and r_variance are running mean & variance

            r_mean = momentum * training_mean
                     + (1 - momentum) * calculated mean
            r_variance = momentum * training_variance
                         + (1 - momentum) * calculated variance
    """

    x_io = node.inputs["X"]
    gamma_io = node.inputs["scale"]
    beta_io = node.inputs["B"]
    mean_io = node.inputs["mean"]
    var_io = node.inputs["var"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    gamma = gamma_io.get_data(alloc_map)
    beta = beta_io.get_data(alloc_map)
    mean = mean_io.get_data(alloc_map)
    var = var_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    epsilon = node.get_attr("epsilon", 1e-05)
    momentum = node.get_attr("momentum", 0.9)
    spatial = node.get_attr("spatial")
    if epsilon < 1e-05:
        epsilon = 1e-05

    def fn():

        # logging.log(logging.INFO, f"BATCHNORM got -->  {x[-1]} BATCHNORM")
        np.copyto(
            y,
            chainer.functions.fixed_batch_normalization(x,
                                                        gamma,
                                                        beta,
                                                        mean,
                                                        var,
                                                        eps=epsilon).array,
        )

    return fn
コード例 #8
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def reduce_mean_cpu(node: Node, alloc_map,
                    config: Config) -> Callable[[], None]:

    data_io = node.inputs["data"]
    reduced_io = node.outputs["reduced"]

    data = data_io.get_data(alloc_map)
    reduced = reduced_io.get_data(alloc_map)

    axes = node.get_attr("axes")
    keep_dims = node.get_attr("keepdims", 1) == 1

    def fn():
        np.mean(data, axis=axes, out=reduced, keepdims=keep_dims)

    return fn
コード例 #9
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def clip_v6_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:

    input_io = node.inputs["input"]
    min_v = node.get_attr("min", -3.402823e38)
    max_v = node.get_attr("max", 3.402823e38)

    output_io = node.outputs["output"]

    inp = input_io.get_data(alloc_map)
    output = output_io.get_data(alloc_map)

    def fn():
        with cupy.cuda.Device(node.device_id):
            cupy.clip(inp, a_min=min_v, a_max=max_v, out=output)

    return fn
コード例 #10
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def dropout_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:

    data_io = node.inputs["data"]
    output_io = node.outputs["output"]
    opt_mask_io = node.get_output("mask")

    data = data_io.get_data(alloc_map)
    output = output_io.get_data(alloc_map)
    opt_mask = opt_mask_io.get_data(alloc_map)

    ratio = node.get_attr("ratio", 0.5)

    def fn():
        with cupy.cuda.Device(node.device_id):
            if opt_mask:
                o, m = chainer.functions.dropout(data,
                                                 ratio=ratio,
                                                 return_mask=True)
                cupy.copyto(output, o.array)
                cupy.copyto(opt_mask, m.array)
            else:
                cupy.copyto(output,
                            chainer.functions.dropout(data, ratio=ratio).array)

    return fn
コード例 #11
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def maxpool_cpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
                Y = MAXPOOL(X) (Using padding, stride and pool kernel size)
            --> Propagate maximum value in the kernel window
    """

    x_io = node.inputs["X"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    # Assume same stride in all directions
    stride = (node.get_attr("strides", [1]))[0]
    # Assume same padding in all directions
    padding = (node.get_attr("pads", [0]))[0]
    kernel_shape = node.get_attr("kernel_shape")

    def fn():
        # time_st = datetime.datetime.now()
        x_pad = np.pad(
            x,
            ((0, 0), (0, 0), (padding, padding), (padding, padding)),
            mode="constant",
            constant_values=0,
        )
        batches, c, h, w = x.shape
        out_h = np.floor(((h - kernel_shape[0] + 2 * padding) / stride) +
                         1).astype(int)
        out_w = np.floor(((w - kernel_shape[1] + 2 * padding) / stride) +
                         1).astype(int)
        out = np.zeros((batches, c, out_h, out_w))
        for i in range(batches):
            for j in range(c):
                for p in range(out_h):
                    for q in range(out_w):
                        p0, p1 = p * stride, (p * stride) + kernel_shape[0]
                        q0, q1 = q * stride, (q * stride) + kernel_shape[1]
                        out[i, j, p, q] = np.max(x_pad[i, j, p0:p1, q0:q1])
        np.copyto(y, out)
        # time_end = datetime.datetime.now()
        # logging.log(logging.INFO, f"TIMER: <{node.operator},{node.node_id}> {time_st} -> {time_end}")

    return fn
コード例 #12
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def gemm_gpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
                Y = alpha*(X @ W) + beta*b
    """

    x_io = node.inputs["A"]
    w_io = node.inputs["B"]
    b_io = node.inputs["C"]
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    w = w_io.get_data(alloc_map)
    b = b_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    alpha = node.get_attr("alpha", 1.0)
    beta = node.get_attr("beta", 1.0)
    transX = node.get_attr("transA", 0)
    transW = node.get_attr("transB", 0)

    def fn():
        with cupy.cuda.Device(node.device_id):
            if transX == 1:
                #xt = chainer.functions.transpose(x)
                xt = cupy.transpose(x)
            else:
                xt = x
            if transW == 1:
                #wt = chainer.functions.transpose(w)
                wt = cupy.transpose(w)
            else:
                wt = w

            z = cupy.dot(alpha * xt, wt)
            cupy.add(z, beta * b, out=y)

    return fn
コード例 #13
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def conv_cpu(node: Node, alloc_map, config: Config) -> Callable[[], None]:
    """
        Function:
            Y = X CONV W (Using padding, stride and dilaton attribute
    """
    x_io = node.inputs["X"]
    w_io = node.inputs["W"]
    b_io = node.get_input("B")
    y_io = node.outputs["Y"]

    x = x_io.get_data(alloc_map)
    w = w_io.get_data(alloc_map)
    b = b_io.get_data(alloc_map)
    y = y_io.get_data(alloc_map)

    # Assuming same stride in all directions
    stride = node.get_attr("strides", [1])[0]
    # Assuming same padding in all directions
    padding = node.get_attr("pads", [0])[0]
    dilations = node.get_attr(
        "dilations", [1])[0]  # Assuming same padding in all directions
    groups = node.get_attr("group", 1)

    def fn():
        np.copyto(
            y,
            (chainer.functions.convolution_2d(
                x,
                w,
                b=b,
                stride=stride,
                pad=padding,
                dilate=dilations,
                groups=groups,
            )).array,
        )

    return fn
コード例 #14
0
ファイル: kernels.py プロジェクト: benghaem/MutNN
def copy(node: Node, alloc_map, config: Config):
    x_io = node.inputs["X"]
    z_io = node.outputs["Z"]

    x = x_io.get_data(alloc_map)
    z = z_io.get_data(alloc_map)

    source_device_id = node.get_attr("source_device")[1]
    target_device_id = node.get_attr("target_device")[1]

    tz = type(z)
    tx = type(x)

    def fn():
        # time_st = datetime.datetime.now()

        if tz == numpy.ndarray:  # to cpu
            np.copyto(z, cupy.asnumpy(x))
            # assert cupy.testing.assert_array_equal(z,x)

        if tz == cupy.core.core.ndarray and tx != cupy.core.core.ndarray:  # to gpu
            with cupy.cuda.Device(node.device_id):
                cupy.add(cupy.asarray(x), 0, out=z)

        if tz == cupy.core.core.ndarray and tx == cupy.core.core.ndarray:  # to gpu
            tmp = None
            with cupy.cuda.Device(source_device_id):
                tmp = cupy.asnumpy(x)
            with cupy.cuda.Device(target_device_id):
                cupy.copyto(z, cupy.asarray(tmp))

            # assert cupy.testing.assert_array_equal(z,x)

            # assert z.shape == x.shape
            # cupy.cuda.get_current_stream().synchronize()
            # tmp = cupy.asarray(x)
            # cupy.cuda.get_current_stream().synchronize()

            # neq = cupy.count_nonzero(cupy.logical_not(z==tmp))
            # print(neq)
            # assert cupy.testing.assert_array_equal(z,tmp)
            # to gpu:

        # og_shape = x.shape

        # if tz == numpy.ndarray:  # to cpu
        #    with cupy.cuda.Device(device=node.device_id):
        #        arr_flat = x.reshape((-1))
        #        z_flat = np.ndarray(arr_flat.shape)

        #        for i, v in enumerate(arr_flat):
        #            z_flat[i] = v

        #        z_flat = z_flat.reshape(og_shape)

        #        np.copyto(z,z_flat)

        # if tz == cupy.core.core.ndarray:

        #    arr_flat = x.reshape((-1))

        #    with cupy.cuda.Device(device=node.device_id):
        #        z_flat = cupy.ndarray(arr_flat.shape)

        #        for i, v in enumerate(arr_flat):
        #            z_flat[i] = v

        #        z_flat = z_flat.reshape(og_shape)

        #        cupy.copyto(z,z_flat)

        # time_end = datetime.datetime.now()
        # logging.log(logging.INFO, f"done copy {z}, {tz}")
        # logging.log(logging.INFO, f"TIMER: <{node.operator},{node.node_id} {time_st} -> {time_end}")

    return fn