def __call__(self, image): if config.dimension() == 2: dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls,self.T) oofimage.setFromBool(image,bools) elif config.dimension() == 3: image.threshold(self.T)
def __call__(self, image): if config.dimension() == 2: dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls, self.T) oofimage.setFromBool(image, bools) elif config.dimension() == 3: image.threshold(self.T)
def __call__(self, image): dbls = oofimage.grayify(image) temp = imageops.gaussSmooth(dbls,self.stdDev) scaled = imageops.scaleArray2(temp, 0.0, 1.0) imageops.setFromArray(image,scaled)
def __call__(self, image): dbls = oofimage.grayify(image) temp = imageops.gaussSmooth(dbls, self.stdDev) scaled = imageops.scaleArray2(temp, 0.0, 1.0) imageops.setFromArray(image, scaled)
def __call__(self, image): dbls = oofimage.grayify(image) temp1=imageops.sobel(dbls,0) temp2=imageops.sobel(dbls,2) combined=imageops.combineVals(temp1,temp2) scaled = imageops.scaleArray2(combined, 0.0, 1.0) imageops.setFromArray(image,scaled)
def __call__(self, image): dbls = oofimage.grayify(image) temp1 = imageops.sobel(dbls, 0) temp2 = imageops.sobel(dbls, 2) combined = imageops.combineVals(temp1, temp2) scaled = imageops.scaleArray2(combined, 0.0, 1.0) imageops.setFromArray(image, scaled)
def __call__(self, image): dbls = oofimage.grayify(image) for i in range(self.numAngles): phi = i * 180. / self.numAngles current = imageops.modGabor(dbls, self.a, self.b, phi) if i != 0: old = imageops.findLargerVals(current, old) else: old = current scaled = imageops.scaleArray2(old, 0.0, 1.0) imageops.setFromArray(image, scaled)
def __call__(self, image): dbls = oofimage.grayify(image) for i in range(self.numAngles): phi = i*180./self.numAngles current = imageops.modGabor(dbls,self.a,self.b,phi) if i!=0: old=imageops.findLargerVals(current,old) else: old=current scaled = imageops.scaleArray2(old, 0.0, 1.0) imageops.setFromArray(image,scaled)
def __call__(self, image): dbls = oofimage.grayify(image) for i in range(self.numAngles): phi = i * 180. / self.numAngles current = imageops.realGabor(dbls, self.a, self.b, phi) if i != 0: old = imageops.findLargerVals(current, old) else: old = current scaled = imageops.scaleArray(old, 0.0, 1.0, self.Line_color) bools = imageops.connect(scaled, self.Threshold, self.t, self.d, self.n, self.B, self.trimYN) oofimage.setFromBool(image, bools)
def __call__(self, image): dbls=oofimage.grayify(image) for i in range(self.numAngles): phi = i*180./self.numAngles current = imageops.realGabor(dbls,self.a,self.b,phi) if i!=0: old=imageops.findLargerVals(current,old) else: old=current scaled = imageops.scaleArray(old, 0.0, 1.0,self.Line_color) bools=imageops.connect(scaled,self.Threshold,self.t,self.d,self.n, self.B,self.trimYN) oofimage.setFromBool(image,bools)
def __call__(self, image): dbls = oofimage.grayify(image) largest = imageops.canny(dbls, self.stdDev) ## smoothed = imageops.gaussSmooth(dbls,self.stdDev) ## for i in range(4): ## temp=imageops.sobel(smoothed,i) ## if i!=0: ## largest=imageops.findLargerVals(largest,temp) ## else: ## largest=temp scaled = imageops.scaleArray2(largest, 0.0, 1.0) imageops.setFromArray(image, scaled)
def __call__(self, image): dbls = oofimage.grayify(image) largest=imageops.canny(dbls,self.stdDev) ## smoothed = imageops.gaussSmooth(dbls,self.stdDev) ## for i in range(4): ## temp=imageops.sobel(smoothed,i) ## if i!=0: ## largest=imageops.findLargerVals(largest,temp) ## else: ## largest=temp scaled = imageops.scaleArray2(largest, 0.0, 1.0) imageops.setFromArray(image,scaled)
def __call__(self, image): ## dbls=imageops.grayify(image) ## final = imageops.newGabor(dbls,self.a,self.b,0) ## gradDirs=intarray.makeIntArray(image.sizeInPixels(),0) ## for i in range(self.numAngles-1): ## phi = (i+1)*180./self.numAngles ## temp = imageops.newGabor(dbls,self.a,self.b,phi) ## final = imageops.findLargerVals2(final,temp,gradDirs,i+1) ## scaled = imageops.scaleArray(final,0.0,1.0,self.Line_color) ## scaled = imageops.nonmaxSuppress(scaled,gradDirs); ## imageops.setFromArray(image,scaled) dbls = oofimage.grayify(image) for i in range(self.numAngles): phi = i*180./self.numAngles current = imageops.newGabor(dbls,self.a,self.b,phi) if i!=0: old=imageops.findLargerVals(current,old) else: old=current scaled = imageops.scaleArray(old, 0.0, 1.0,self.Line_color) imageops.setFromArray(image,scaled)
def __call__(self, image): ## dbls=imageops.grayify(image) ## final = imageops.newGabor(dbls,self.a,self.b,0) ## gradDirs=intarray.makeIntArray(image.sizeInPixels(),0) ## for i in range(self.numAngles-1): ## phi = (i+1)*180./self.numAngles ## temp = imageops.newGabor(dbls,self.a,self.b,phi) ## final = imageops.findLargerVals2(final,temp,gradDirs,i+1) ## scaled = imageops.scaleArray(final,0.0,1.0,self.Line_color) ## scaled = imageops.nonmaxSuppress(scaled,gradDirs); ## imageops.setFromArray(image,scaled) dbls = oofimage.grayify(image) for i in range(self.numAngles): phi = i * 180. / self.numAngles current = imageops.newGabor(dbls, self.a, self.b, phi) if i != 0: old = imageops.findLargerVals(current, old) else: old = current scaled = imageops.scaleArray(old, 0.0, 1.0, self.Line_color) imageops.setFromArray(image, scaled)
def __call__(self,image): dbls=oofimage.grayify(image) bool1=oofimage.threshold(dbls,.5) imageops.compare(bool1,self.val)
def __call__(self, image): dbls = oofimage.grayify(image) dbls = imageops.spread2(dbls, self.T) imageops.setFromArray(image, dbls)
def __call__(self, image): dbls = oofimage.grayify(image) dbls = imageops.addNoise(dbls, self.Standard_deviation) imageops.setFromArray(image, dbls)
def __call__(self, image): dbls = oofimage.grayify(image) # bools=oofimage.threshold(dbls,.5) bools = imageops.connecter(dbls, self.Threshold, self.t, self.d, self.n, self.B, self.trimYN) oofimage.setFromBool(image, bools)
def __call__(self, image): dbls = oofimage.grayify(image) bools = imageops.hysteresisThresh(dbls,self.T1,self.T2) oofimage.setFromBool(image,bools)
def __call__(self, image): dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls, .5) hough = imageops.houghTrans(bools)
def __call__(self, image): dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls, self.T) oofimage.setFromBool(image, bools)
def __call__(self, image): dbls = oofimage.grayify(image) temp = imageops.laplacian(dbls) scaled = imageops.scaleArray2(temp, 0.0, 1.0) imageops.setFromArray(image,scaled)
def __call__(self,image): dbls=oofimage.grayify(image) # bools=oofimage.threshold(dbls,.5) bools=imageops.connecter(dbls,self.Threshold,self.t,self.d,self.n, self.B,self.trimYN) oofimage.setFromBool(image,bools)
def __call__(self,image): dbls=oofimage.grayify(image) dbls=imageops.addNoise(dbls,self.Standard_deviation) imageops.setFromArray(image,dbls)
def __call__(self, image): dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls,self.T) oofimage.setFromBool(image,bools)
def __call__(self, image): dbls = oofimage.grayify(image) imageops.printHistogram(dbls, self.val)
def __call__(self, image): dbls = oofimage.grayify(image) bool1 = oofimage.threshold(dbls, .5) imageops.compare(bool1, self.val)
def __call__(self,image): dbls=oofimage.grayify(image) imageops.printHistogram(dbls,self.val)
def __call__(self, image): dbls = oofimage.grayify(image) bools = imageops.hysteresisThresh(dbls, self.T1, self.T2) oofimage.setFromBool(image, bools)
def __call__(self, image): dbls = oofimage.grayify(image) bools = oofimage.threshold(dbls,.5) hough = imageops.houghTrans(bools)
def __call__(self, image): dbls = oofimage.grayify(image) temp = imageops.laplacian(dbls) scaled = imageops.scaleArray2(temp, 0.0, 1.0) imageops.setFromArray(image, scaled)
def __call__(self,image): dbls=oofimage.grayify(image) dbls=imageops.spread2(dbls,self.T) imageops.setFromArray(image,dbls)