コード例 #1
0
    def fit_parameters(
        self,
        benchmark_data_file,
        degree_of_confidence,
        row_limit=None,
        x0=None,
        bounds=None,
        used_arg_indices=None,
    ):

        if isinstance(benchmark_data_file, str):
            input_arr, runtime_arr = parse_benchmark_result(
                benchmark_data_file,
                row_limit=row_limit,
                used_arg_indices=used_arg_indices,
            )
        elif isinstance(benchmark_data_file, list):
            if len(benchmark_data_file) == 0:
                raise Exception("Received empty list")

            input_arr_ = []
            runtime_arr_ = []

            for path in benchmark_data_file:
                input_arr, runtime_arr = parse_benchmark_result(
                    path, row_limit=row_limit, used_arg_indices=used_arg_indices
                )
                input_arr_.append(input_arr)
                runtime_arr_.append(runtime_arr)

            input_arr = np.concatenate(input_arr_)
            runtime_arr = np.concatenate(runtime_arr_)
        else:
            raise Exception("Invalid argument")

        n_model_param = self.get_n_model_param()
        model_input_size = self.get_model_input_size()

        if False in [len(i) == model_input_size for i in input_arr]:
            raise Exception(
                "Number of arguments in data file does not match operation definition: %s"
                % (self.name)
            )

        if model_input_size == 0:
            param = (fit_constant(runtime_arr, degree_of_confidence),)
        else:
            param = fit(
                self,
                input_arr,
                runtime_arr,
                degree_of_confidence,
                x0=x0,
                bounds=bounds,
            )

        self.latest_param = param

        return param
コード例 #2
0
    def output_model_surface(
        self,
        param,
        data_file,
        basename,
        row_limit=None,
        used_arg_indices=None,
        bench_label=None,
        resolution=100,
    ):

        input_arr, runtime_arr = parse_benchmark_result(
            data_file, row_limit=row_limit, used_arg_indices=used_arg_indices
        )
        tmp = np.hstack((input_arr, runtime_arr[:, np.newaxis]))

        input_arr = np.squeeze(input_arr)

        if input_arr.ndim not in [1, 2] or input_arr.size == 0:
            logging.debug(
                "Model surface output supported only for models of 1 or 2 variables, skipping"
            )
            return None
        # assert input_arr.ndim <= 2
        write_csv_file(basename + "_orig.csv", tmp)

        ndim = input_arr.ndim

        if ndim == 1:
            bboxes = [(input_arr.min(), input_arr.max())]
        else:
            bboxes = [
                (i, j) for i, j in zip(input_arr.min(axis=0), input_arr.max(axis=0))
            ]

        # for i in range(input_arr.ndim):

        model = self.get_runtime_model()

        axis_values = []
        for i in bboxes:
            axis_values.append(np.linspace(*i, resolution))

        mesh_out = np.meshgrid(*axis_values, indexing="ij")

        mesh = np.array([i.flatten() for i in mesh_out]).T

        # X = np.linspace(input_arr.min(), input_arr.max(), 1000)
        Y = model(param, mesh)

        out_arr = np.hstack((mesh, Y[:, np.newaxis]))

        first_row_labels = ["arg_%d" % i for i in range(ndim)]
        first_row_labels += ["val"]

        write_csv_file(basename + "_model.csv", out_arr, chunk_size=resolution)
コード例 #3
0
import pandas as pd
import numpy as np
import sys

import matplotlib.pyplot as plt

from opbench.helper import parse_benchmark_result

input_arr, runtime_arr = parse_benchmark_result(sys.argv[1])

indices_0 = [i for i in range(input_arr.shape[0]) if input_arr[i, 1] == 0]
indices_1 = [i for i in range(input_arr.shape[0]) if input_arr[i, 1] == 1]

# import ipdb; ipdb.set_trace()

plt.scatter(
    input_arr[indices_0, 0],
    runtime_arr[indices_0],
    marker="x",
    color="red",
    label="index = 0",
)
plt.scatter(
    input_arr[indices_1, 0],
    runtime_arr[indices_1],
    marker="x",
    color="blue",
    label="index = 1",
)

plt.xlabel("dest_size [byte]")
コード例 #4
0
def plot_argumentless_operation(
    operation,
    constant,
    data_file,
    output_file,
    row_limit=None,
    used_arg_indices=None,
    bench_label=None,
):

    assert operation.get_model_input_size() == 0

    input_arr, runtime_arr = parse_benchmark_result(
        data_file, row_limit=row_limit, used_arg_indices=used_arg_indices
    )

    mean = np.mean(runtime_arr)
    std = np.std(runtime_arr)

    y_left = []
    y_right = []

    for i in zip(runtime_arr):
        if constant >= i:
            y_left.append(i)
        else:
            y_right.append(i)

    ratio = len(y_left) / (len(y_right) + len(y_left))

    fig = plt.figure()
    plt.grid()

    plt.hist(runtime_arr, bins=64, range=(mean - 4 * std, mean + 4 * std), ec="k")

    plt.axvline(constant, color="r", linewidth=2, label="Threshold = %.4g" % constant)

    title = "Operation: %s" % (operation.get_name())

    if bench_label is not None:
        title += ", Label: %s" % bench_label

    title += "\n"
    title += "Points left: %d, Points right: %d, DoC: %.1f%%" % (
        len(y_left),
        len(y_right),
        ratio * 100,
    )

    plt.title(title)

    plt.xlabel("Runtime [%s]" % TIME_UNIT)
    plt.ylabel("Number of points")

    plt.xlim([max(0, mean - 4 * std), max(mean + 4 * std, constant)])

    tick_vals = [
        mean - 3 * std,
        mean - 2 * std,
        mean - std,
        mean,
        mean + std,
        mean + 2 * std,
        mean + 3 * std,
    ]

    tick_labels = [
        "%.2g\n$\\mu-3\\sigma$" % tick_vals[0],
        "%.2g\n$\\mu-2\\sigma$" % tick_vals[1],
        "%.2g\n$\\mu-\\sigma$" % tick_vals[2],
        "%.2g\n$\\mu$" % tick_vals[3],
        "%.2g\n$\\mu+\\sigma$" % tick_vals[4],
        "%.2g\n$\\mu+2\\sigma$" % tick_vals[5],
        "%.2g\n$\\mu+3\\sigma$" % tick_vals[6],
    ]

    negative = False
    while True:
        if len(tick_vals) == 0:
            break
        if tick_vals[0] > 0:
            break
        tick_vals.pop(0)
        tick_labels.pop(0)
        negative = True

    if negative:
        tick_vals.insert(0, 0)
        tick_labels.insert(0, "0")

    plt.xticks(
        tick_vals, tick_labels,
    )

    plt.legend()
    plt.tight_layout()
    plt.savefig(output_file, dpi=300)

    plt.close()
コード例 #5
0
def plot_single_input_operation(
    operation,
    param,
    data_file,
    output_file,
    row_limit=None,
    used_arg_indices=None,
    bench_label=None,
):

    assert operation.get_model_input_size() == 1

    input_arr, runtime_arr = parse_benchmark_result(
        data_file, row_limit=row_limit, used_arg_indices=used_arg_indices
    )

    model = operation.get_runtime_model()

    model_runtime = model(param, input_arr)

    X = np.linspace(input_arr.min(), input_arr.max(), 1000)
    # Y = np.array([MODEL(param, i) for i in X])
    Y = model(param, X[:, np.newaxis])

    x_below = []
    x_above = []
    y_below = []
    y_above = []

    for i, j, k in zip(input_arr, model_runtime, runtime_arr):
        if j >= k:
            x_below.append(i)
            y_below.append(k)
        else:
            x_above.append(i)
            y_above.append(k)

    ratio = len(x_below) / (len(x_above) + len(x_below))

    plt.figure()

    plt.scatter(x_below, y_below, color="green", marker="x")
    plt.scatter(x_above, y_above, color="blue", marker="x")

    fit_label = "Fit " + operation.get_model_definition() + " -> "
    fit_label += " ".join(
        [
            "%s = %.3g" % (i, j)
            for i, j in zip(operation.get_model_parameter_labels(), param)
        ]
    )

    plt.plot(X, Y, color="red", label=fit_label)

    title = "Operation: %s" % (operation.get_name())

    if bench_label is not None:
        title += ", Label: %s" % bench_label

    title += "\n"
    title += "Points above: %d, Points below: %d, DoC: %.1f%%" % (
        len(x_above),
        len(x_below),
        ratio * 100,
    )

    plt.title(title)

    plt.xlabel(
        operation.get_model_variable_descriptions()[0]
        + " ["
        + operation.get_model_variable_units()[0]
        + "]"
    )
    plt.ylabel("Runtime [%s]" % TIME_UNIT)

    plt.grid()
    plt.legend()
    plt.tight_layout()
    plt.savefig(output_file, dpi=300)
コード例 #6
0
import argparse

import matplotlib.pyplot as plt

from opbench.helper import parse_benchmark_result

parser = argparse.ArgumentParser(
    description=
    "Given a benchmark data file, plot runtime against a single argument")

parser.add_argument("csv_file")
parser.add_argument("-i",
                    "--index",
                    type=int,
                    required=True,
                    help="Index of the arg, e.g. 0, 1, 2, ...")

args = parser.parse_args()

input_arr, runtime_arr = parse_benchmark_result(args.csv_file)

plt.scatter(input_arr[:, args.index], runtime_arr, marker="x")

plt.xlabel("arg at index %d" % args.index)
plt.ylabel("runtime [picosecond]")

plt.grid()

plt.show()