コード例 #1
0
ファイル: func.py プロジェクト: jdgreen/Blocking
def diff1(king,king_dat,output,high=True,type='thpv2',v='v',monte=False,sttest=True,tcrit=0.87,graph=True,filled=False,sig=False,monthly=1,trials=1000,cutoff=0.90):

	#################################################################
	# METHOD: 25/11/13												#
	#																#
	# take high/low solar data 										#
	# compute average blocking frequency for each lat lon point 	#
	# then difference from all-time data (climatological data) 		#
	# plot this difference using basemap and compare to Woolings 	#
	# Note: this function returns the difference data 				#
	#																#
	#################################################################
		
	try:
		from open import open_pkl
		#read in x-y data
		opt = []
		data_xy = open_pkl(king_dat,'era40.gga'+v+'.year-2002.month-01.b.'+type+'_003.duration_ge_5_day.pkl')
		Lon,Lat = data_xy['lon']['lon'],data_xy['lat']['lat']
		Lon = np.append(Lon,360+Lon[0])
		#print Lon
		X,Y = meshgrid(Lon,Lat)
		opt.append(X)
		opt.append(Y)
		# #read in data

		if high == True:
			data = read_list(king+'high_era40_blocking_'+type+'.list',king_dat)
			#generate listname
			listnm = 'era40_blocking_'+str(type)+'_high_blk'
			stype = 'high'
		elif high != True:
			data = read_list(king+'low_era40_blocking_'+type+'.list',king_dat)
			#generate listname
			listnm = 'era40_blocking_'+str(type)+'_low_blk'
			stype = 'low'
		clim = read_list(king+'era40_blocking_'+type+'.list',king_dat)
		#checks of data read in
		if len(data) != len(clim) or len(data[0]) != len(clim[0]):
			print "Error: Array lengths don't match\nData: "+str(len(data)),str(len(data[0]))+"\nClim: "+str(len(clim)),str(len(clim[0]))
			return 0
		#compute difference array
		diff = zeros(shape=(len(data),len(data[0])+1))
		test = []
		for lat in range(0,len(data)):
			for lon in range(0,len(data[0])):
				diff[lat][lon] =  -clim[lat][lon] + data[lat][lon]
		#final value for diff
		for lat in range(0, len(data)):
			diff[lat][-1] = -clim[lat][0] + data[lat][0]
		opt.append(diff)

		if sig == True:	
			try: 
				from sig_test import sig_test
				regions = sig_test(list_name='era40_blocking_thpv2.list',list_dir=king,monte=monte,sttest=sttest,tcrit=tcrit,data_dir=king_dat,high=high,trials=1000,cutoff=cutoff)
				extra = regions[:,0]
				extra.shape = (regions[:,0].shape[0],1)
				regions = np.concatenate((regions,extra),1)
			except ValueError as err:	print "Value Error: " + str(err)

		if graph == True:
			#generate output filename
			if monte == True: sgtype = 'monte'
			if sttest == True: sgtype = 'ttest'
			output = str(output)+'blk'+str(listnm)+str(sgtype)+str(int(100*(1-cutoff)+1))+'.png'

			from mpl_toolkits.basemap import Basemap
			import matplotlib.pyplot as plt

			# use low resolution coastlines.
			fig,ax = plt.subplots()
			# fig = plt.figure()
			map = fig.add_subplot()
			map = Basemap(boundinglat=Lat[-1],lon_0=0,projection='npaeqd',resolution='l',round=True)
			lon,lat = np.array(opt[0]),np.array(opt[1])
			x,y = map(lon,lat)

		 	# draw coastlines, country boundaries, fill continents.
			map.drawcoastlines(linewidth=0.25)
			map.drawcountries(linewidth=0.25)

			# draw the edge of the map projection region (the projection limb)
			map.drawmapboundary()
			#if sig == True: map.fill()
			if filled == False:	
				a = np.array(range(-100,102,2))/float(100)
				p = map.contour(x,y,np.array(opt[2]),a,colors='k')
		 	elif filled == True: 
		 		a = np.array(range(-100,102,2))/float(100)
				c = map.contour(x,y,np.array(opt[2]),10,linestyles='solid',colors='black')
		 		p = map.contourf(x,y,-np.array(opt[2]),10,cmap=cm.RdBu,vmin=np.array(opt[2]).min(),vmax=np.array(opt[2]).max(),alpha=0.5,)
		 		cb = fig.colorbar(p, ax=ax)
		 		t = ax.set_title('blk'+stype+'-clim')
		 	if sig == True:
		 		# masking the array 
				regions = np.ma.array(regions)
				interior = regions < 0.5
				regions[interior] = np.ma.masked
				s = map.contourf(x,y,regions,1,cmap=cm.gray_r)
				t = ax.set_title('blk'+str(stype)+'-clim (sig '+str(int(100*(1.0-cutoff)+1))+'%)')
			fig.savefig(str(output))
		return opt

	except IOError as err:
		print "File error: " + str(err)

	except ValueError as err:
		print "Value Error: " + str(err)
コード例 #2
0
ファイル: sig_test.py プロジェクト: jdgreen/Blocking
def sig_test(
    list_dir="",
    data_dir="",
    monte=True,
    sttest=False,
    tcrit=0,
    list_name="era40_blocking_thpv2.list",
    high=True,
    month="thpv2",
    trials=1000,
    cutoff=0.8,
):
    try:
        from open import stdata
        from open import read_list
        from numpy import zeros

        # determining whether list is high/low solar data
        hh = "high"
        if high != True:
            hh = "low"
        # filepath of solar data list
        name = list_dir + hh + "_" + list_name
        # extracting data to arrays
        solar_data = stdata(name, directory=data_dir, monthly=month)
        all_data = stdata(list_dir + list_name, directory=data_dir, monthly=month)
        # blocking frequency of hig/low solar and climatological blocking frequency
        clim = read_list(list_dir + list_name, data_dir)
        b_hls = read_list(name, data_dir)
        # test statistic
        diff = np.array(solar_data) - np.array(clim)
        # t-test to find significant lat-lon points at a specific confidence level
        if sttest == True:
            opt = ttest(zeros(diff.shape), diff, tcrit)
            return opt
            # monte carlo bootstrap method for determining a lat/lon array of significances
        if monte == True:
            from random import randint

            # generate trial values for analysis
            for trial in range(trials):
                # generate len(solar_data) random years and initial zero array
                test = zeros(all_data[0].shape)
                for i in range(len(solar_data)):
                    year = randint(0, len(solar_data) - 1)
                    # check for correct shape, exit is not
                    if all_data[year].shape != (20, 96):
                        exit(0)
                        # append each randomly generated year to test array
                    test += all_data[year]
                    # first trial condition
                if trial == 0:
                    # generate statistic
                    values = test / len(solar_data) - clim
                    # values = np.array(diff_test(test/len(solar_data),clim))
                    # reshape for concatenation
                    values.shape = (len(values), len(values[0]), 1)
                    # same method as above for subsequent trials
                elif trial != 0:
                    tmp = np.array(test / len(solar_data) - clim)
                    # tmp = np.array(diff_test(test/len(solar_data),clim))
                    tmp.shape = (len(values), len(values[0]), 1)
                    # concatenate arrays to form final array
                    values = np.concatenate((values, tmp), 2)
            print values.shape
            fig = plt.figure()
            plt.hist(values[6][18])
            axes = plt.gca()
            # axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)
            # axes.plot(x, y, 'r')
            axes.set_xlabel(xlabel)
            axes.set_ylabel(ylabel)
            plt.title(title)
            fig.show()
            print diff[6][18]
            # reshape difference array for concatenation
            diff.shape = (len(values), len(values[0]), 1)
            # return the index within each element of the array that will sort the values
            tmp = np.mean(values, axis=2)
            values = np.concatenate((values, diff), 2).argsort().argsort()  # this second argsort is essential
            tmp2 = values
            # print values
            # account for odd behaviour for when both are zero
            for lat in range(len(values)):
                for lon in range(len(values[lat])):
                    if values[lat][lon][-1] == trials:  # and diff[lat][lon][0] == 0:
                        values[lat][lon][-1] = trials / 2
                        # if lat == 19:
                        # print values[19][lon][-1],diff[19][lon]
                        # isolate index that the difference array will need when sorting
            sig = np.delete(values, s_[:-1], 2)
            # reshape array to lat/lon style
            sig.shape = (len(values), len(values[0]))
            # transform indices into probabilities
            sig = sig.astype(float) / float(trials)

            # # alternate method - I consider this to be incorrect but did produce okay graphs
            # sig = (values == trials).nonzero()[-1] # sig = sig.astype(float)/float(trials)		#generate an array of 1s and 0s depending if in range of two tailed significance #values <lower limit
            lower = (1 - cutoff) / 2
            opt = zeros(sig.shape)
            for lat in range(len(values)):
                for lon in range(len(values[lat])):
                    if sig[lat][lon] > cutoff + lower:
                        opt[lat][lon] = 1
                    if sig[lat][lon] < lower:
                        opt[lat][lon] = 1
                    # opt2 = - (sig - (1+lower)).astype(int)
                    # #values > upper limit
                    # opt2 = opt2 + (sig + (1-cutoff)/2).astype(int)
                    # for lat in range(len(values)):
                    # 	for lon in range(len(values[lat])):
                    # 		if opt1[lat][lon] != opt2[lat][lon]:
                    # 			print lat*3.72,lon*3.75,diff[lat][lon],tmp[lat][lon],opt1[lat][lon],opt2[lat][lon],tmp2[lat][lon][-1]
            return opt.astype(int)

    except IOError as err:
        print "File error: " + str(err)

    except ValueError as err:
        print "Value Error: " + str(err)
コード例 #3
0
ファイル: func.py プロジェクト: jdgreen/Blocking
		if high == True:
			yrs = np.array(years()['SCmax'])-1957
			data = np.mean(all_data[yrs],axis=0)
			# data = read_list(king+'high_era40_blocking_'+type+'.list',king_dat)
			#generate listname
			listnm = 'era40_blocking_'+str(type)+'_high_blk'
			stype = 'high'
		elif high != True:
			yrs = np.array(years()['SCmin'])-1957
			data = np.mean(all_data[yrs],axis=0)
			# data = read_list(king+'low_era40_blocking_'+type+'.list',king_dat)
			#generate listname
			listnm = 'era40_blocking_'+str(type)+'_low_blk'
			stype = 'low'
		clim = read_list(king+'era40_blocking_'+type+'.list',king_dat)
		#checks of data read in
		if len(data) != len(clim) or len(data[0]) != len(clim[0]):
			print "Error: Array lengths don't match\nData: "+str(len(data)),str(len(data[0]))+"\nClim: "+str(len(clim)),str(len(clim[0]))
			return 0
		#compute difference array
		diff = zeros(shape=(len(data),len(data[0])+1))
		test = []
		for lat in range(0,len(data)):
			for lon in range(0,len(data[0])):
				diff[lat][lon] =  -clim[lat][lon] + data[lat][lon]
		#final value for diff
		for lat in range(0, len(data)):
			diff[lat][-1] = -clim[lat][0] + data[lat][0]
		opt.append(diff)