コード例 #1
0
def test_large_random_objects():
    for i in range(1, 8):
        for j in range(1, 8):
            for k in range(1000):    
                arr1 = 10000.0*np.random.rand(i, 3)
                arr2 = 10000.0*np.random.rand(j, 3)
                opengjk.pygjk(arr1, arr2) 
コード例 #2
0
def test_hex_collision_3d(delta):
    hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
                      [0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
                     dtype=np.float64)
    P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
    P1 = np.array([2, 2, 1], dtype=np.float64)
    P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
    P3 = P1 + P2 - P0
    quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
    n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
         np.linalg.norm(
        np.cross(quad_1[1]-quad_1[0],
                 quad_1[2]-quad_1[0])))
    quad_2 = quad_1 + n
    hex_2 = np.zeros((8, 3), dtype=np.float64)
    hex_2[:4, :] = quad_1
    hex_2[4:, :] = quad_2
    actual_distance = np.linalg.norm(
        np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
    distance = opengjk.pygjk(hex_1, hex_2)

    if P0[0] < 1:
        assert(np.isclose(distance, 0, atol=settol()))
    else:
        print("Computed distance ", distance,
              "Actual distance ", actual_distance)
        assert(np.isclose(distance, actual_distance, atol=settol()))
コード例 #3
0
def test_line_point_distance(delta):
    line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
    point_on_line = line[0] + 0.27*(line[1]-line[0])
    normal = np.cross(line[0], line[1])
    point = point_on_line + delta * normal
    distance = opengjk.pygjk(line, point)
    actual_distance = distance_point_to_line_3D(
        line[0], line[1], point)
    print(distance, actual_distance)
    assert(np.isclose(distance, actual_distance, atol=settol() ))
コード例 #4
0
def test_tetra_distance_3d(delta):
    tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
                        [0, 0, 1]], dtype=np.float64)
    tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
                        [0.5, 0.3, -delta]], dtype=np.float64)
    actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
                                                 tetra_1[2], tetra_2[3])
    distance = opengjk.pygjk(tetra_1, tetra_2)
    print("Computed distance ", distance, "Actual distance ", actual_distance)

    assert(np.isclose(distance, actual_distance, atol=settol() ))
コード例 #5
0
def test_line_line_distance(delta):
    line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
    point_on_line = line[0] + 0.38*(line[1]-line[0])
    normal = np.cross(line[0], line[1])
    point = point_on_line + delta * normal
    line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
    distance = opengjk.pygjk(line, line_2)
    actual_distance = distance_point_to_line_3D(
        line[0], line[1], line_2[0])
    print(distance, actual_distance)
    assert(np.isclose(distance, actual_distance, atol=settol() ))
コード例 #6
0
def test_quad_distance2d(delta):
    quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
                       [1, 1, 0]], dtype=np.float64)
    quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
                       [2, 4, 0], [4, 4, 0]], dtype=np.float64)
    P1 = quad_1[2]
    P2 = quad_1[3]
    point = quad_2[0]
    actual_distance = distance_point_to_line_3D(P1, P2, point)
    distance = opengjk.pygjk(quad_1, quad_2)
    print("Computed distance ", distance, "Actual distance ", actual_distance)

    assert(np.isclose(distance, actual_distance, atol=settol() ))
コード例 #7
0
def test_tri_distance(delta):
    tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
    tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
        1, 1, 0]], dtype=np.float64)
    P1 = tri_1[2]
    P2 = tri_1[1]
    point = tri_2[0]
    actual_distance = distance_point_to_line_3D(P1, P2, point)
    distance = opengjk.pygjk(tri_1, tri_2) 
    print("Computed distance ", distance, "Actual distance ", actual_distance)

    #embed()
    assert(np.isclose(distance, actual_distance, atol=settol() ))
コード例 #8
0
def test_cube_distance(c0, c1):
    cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
                       [-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
                      dtype=np.float64)]

    r = R.from_euler('z', 45, degrees=True)
    cubes.append(r.apply(cubes[0]))
    r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
    cubes.append(r.apply(cubes[1]))
    r = R.from_euler('y', 45, degrees=True)
    cubes.append(r.apply(cubes[0]))

    dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
    cube0 = cubes[c0]

    for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
        cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
        distance = opengjk.pygjk(cube0, cube1)
        print(distance, delta)
        assert(np.isclose(distance, delta))
コード例 #9
0
#        ####  #      ###### #    #  #####   #####  #    #                #
#                                                                         #
#   This file is part of openGJK.                                         #
#                                                                         #
#   OpenGJK is free software: you can redistribute it and/or modify       #
#    it under the terms of the GNU General Public License as published by #
#    the Free Software Foundation, either version 3 of the License, or    #
#    any later version.                                                   #
#                                                                         #
#   OpenGJK is distributed in the hope that it will be useful,           #
#    but WITHOUT ANY WARRANTY; without even the implied warranty of       #
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See The        #
#    GNU General Public License for more details.                         #
#                                                                         #
#   You should have received a copy of the GNU General Public License     #
#    along with OpenGJK. If not, see <https://www.gnu.org/licenses/>.     #
#                                                                         #
#        openGJK: open-source Gilbert-Johnson-Keerthi algorithm           #
#             Copyright (C) Mattia Montanari 2018 - 2020                  #
#               http://iel.eng.ox.ac.uk/?page_id=504                      #
#                                                                         #
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #

import numpy as np
import openGJK_cython as opengjk

a = np.array([[1., 1., 1.], [1., 1., 1.]])
b = np.array([[11., 1., 1.], [1., 1., 1.]])
d = opengjk.pygjk(a, b)

print(d)