コード例 #1
0
    def get_bo_candidates(self, num_configs):
        # todo: parallel methods
        std_incumbent_value = np.min(std_normalization(self.target_y[self.iterate_r[-1]]))
        # Update surrogate model in acquisition function.
        self.acquisition_function.update(model=self.weighted_surrogate, eta=std_incumbent_value,
                                         num_data=len(self.history_container.data))

        challengers = self.acq_optimizer.maximize(
            runhistory=self.history_container,
            num_points=5000,
        )
        return challengers.challengers[:num_configs]
コード例 #2
0
ファイル: async_mq_mfes.py プロジェクト: PKU-DAIR/open-box
    def update_observation(self, config, perf, n_iteration):
        rung_id = self.get_rung_id(self.bracket, n_iteration)

        updated = False
        for job in self.bracket[rung_id]['jobs']:
            _job_status, _config, _perf, _extra_conf = job
            if _config == config:
                assert _job_status == RUNNING
                job[0] = COMPLETED
                job[2] = perf
                updated = True
                break
        assert updated
        # print('=== bracket after update_observation:', self.get_bracket_status(self.bracket))

        configs_running = list()
        for _config in self.bracket[rung_id]['configs']:
            if _config not in self.target_x[n_iteration]:
                configs_running.append(_config)
        value_imputed = np.median(self.target_y[n_iteration])

        n_iteration = int(n_iteration)
        self.target_x[n_iteration].append(config)
        self.target_y[n_iteration].append(perf)

        if n_iteration == self.R:
            self.incumbent_configs.append(config)
            self.incumbent_perfs.append(perf)
            # Update history container.
            self.history_container.add(config, perf)

        # Refit the ensemble surrogate model.
        configs_train = self.target_x[n_iteration] + configs_running
        results_train = self.target_y[n_iteration] + [value_imputed
                                                      ] * len(configs_running)
        results_train = np.array(std_normalization(results_train),
                                 dtype=np.float64)
        if not self.use_bohb_strategy:
            self.surrogate.train(
                convert_configurations_to_array(configs_train),
                results_train,
                r=n_iteration)
        else:
            if n_iteration == self.R:
                self.surrogate.train(
                    convert_configurations_to_array(configs_train),
                    results_train)
コード例 #3
0
    def iterate(self, skip_last=0):

        for s in reversed(range(self.s_max + 1)):

            if self.update_enable and self.weight_update_id > self.s_max:
                self.update_weight()
            self.weight_update_id += 1

            # Set initial number of configurations
            n = int(ceil(self.B / self.R / (s + 1) * self.eta ** s))
            # initial number of iterations per config
            r = int(self.R * self.eta ** (-s))

            # Choose a batch of configurations in different mechanisms.
            start_time = time.time()
            T = self.choose_next(n)
            time_elapsed = time.time() - start_time
            self.logger.info("[%s] Choosing next configurations took %.2f sec." % (self.method_name, time_elapsed))

            extra_info = None
            last_run_num = None

            for i in range((s + 1) - int(skip_last)):  # changed from s + 1

                # Run each of the n configs for <iterations>
                # and keep best (n_configs / eta) configurations

                n_configs = n * self.eta ** (-i)
                n_iteration = r * self.eta ** (i)

                n_iter = n_iteration
                if last_run_num is not None and not self.restart_needed:
                    n_iter -= last_run_num
                last_run_num = n_iteration

                self.logger.info("%s: %d configurations x %d iterations each" %
                                 (self.method_name, int(n_configs), int(n_iteration)))

                ret_val, early_stops = self.run_in_parallel(T, n_iter, extra_info)
                val_losses = [item['loss'] for item in ret_val]
                ref_list = [item['ref_id'] for item in ret_val]

                self.target_x[int(n_iteration)].extend(T)
                self.target_y[int(n_iteration)].extend(val_losses)

                if int(n_iteration) == self.R:
                    self.incumbent_configs.extend(T)
                    self.incumbent_perfs.extend(val_losses)
                    # Update history container.
                    for _config, _perf in zip(T, val_losses):
                        self.history_container.add(_config, _perf)

                # Select a number of best configurations for the next loop.
                # Filter out early stops, if any.
                indices = np.argsort(val_losses)
                if len(T) == sum(early_stops):
                    break
                if len(T) >= self.eta:
                    indices = [i for i in indices if not early_stops[i]]
                    T = [T[i] for i in indices]
                    extra_info = [ref_list[i] for i in indices]
                    reduced_num = int(n_configs / self.eta)
                    T = T[0:reduced_num]
                    extra_info = extra_info[0:reduced_num]
                else:
                    T = [T[indices[0]]]     # todo: confirm no filter early stops?
                    extra_info = [ref_list[indices[0]]]
                val_losses = [val_losses[i] for i in indices][0:len(T)]  # update: sorted
                incumbent_loss = val_losses[0]
                self.add_stage_history(self.stage_id, min(self.global_incumbent, incumbent_loss))
                self.stage_id += 1
            # self.remove_immediate_model()

            for item in self.iterate_r[self.iterate_r.index(r):]:
                # NORMALIZE Objective value: normalization
                normalized_y = std_normalization(self.target_y[item])
                self.weighted_surrogate.train(convert_configurations_to_array(self.target_x[item]),
                                              np.array(normalized_y, dtype=np.float64), r=item)