"type": "float", "bound": [0.7, 1], "default": 1, "q": 0.1 }, "colsample_bytree": { "type": "float", "bound": [0.7, 1], "default": 1, "q": 0.1 }, }, # "num_objs": 1, # "num_constraints": 0, # "advisor_type": "default", "max_runs": 100, # "surrogate_type": "prf", "time_limit_per_trial": 180, # "logging_dir": "logs", "task_id": "so_hpo" } bo = create_smbo(objective_function, **config_dict) history = bo.run() print(history) history.plot_convergence() plt.show() # history.visualize_jupyter()
def main(): bo = create_smbo(branin, **config_dict)
config_dict = { "optimizer": "SMBO", "parameters": { "x1": { "type": "float", "bound": [-5, 10], "default": 0 }, "x2": { "type": "float", "bound": [0, 15] }, }, "advisor_type": 'default', "max_runs": 50, "surrogate_type": 'gp', "time_limit_per_trial": 5, "logging_dir": 'logs', "task_id": 'hp1' } bo = create_smbo(branin, **config_dict) history = bo.run() inc_value = bo.get_incumbent() print('BO', '=' * 30) print(inc_value) print(history) history.plot_convergence(true_minimum=0.397887) plt.show()