コード例 #1
0
    def __call__(self):
        """ Returns a derived gauge for outgoing requests per second

        Calculated by obtaining by getting the number of outgoing requests made
        using the requests library within an elapsed time and dividing that
        value over the elapsed time.

        :rtype: :class:`opencensus.metrics.export.gauge.DerivedLongGauge`
        :return: The gauge representing the outgoing requests metric
        """
        gauge = DerivedDoubleGauge(DependencyRateMetric.NAME,
                                   'Outgoing Requests per second', 'rps', [])
        gauge.create_default_time_series(DependencyRateMetric.get_value)
        return gauge
コード例 #2
0
    def __call__(self):
        """ Returns a derived gauge for incoming requests execution rate

        Calculated by getting the time it takes to make an incoming request
        and dividing over the amount of incoming requests over an elapsed time.

        :rtype: :class:`opencensus.metrics.export.gauge.DerivedLongGauge`
        :return: The gauge representing the incoming requests metric
        """
        gauge = DerivedDoubleGauge(RequestsAvgExecutionMetric.NAME,
                                   'Incoming Requests Average Execution Rate',
                                   'milliseconds', [])
        gauge.create_default_time_series(RequestsAvgExecutionMetric.get_value)
        return gauge
コード例 #3
0
 def __call__(self):
     """ Returns a derived gauge for the CPU usage for the current process.
     Return values range from 0.0 to 100.0 inclusive.
     :rtype: :class:`opencensus.metrics.export.gauge.DerivedDoubleGauge`
     :return: The gauge representing the process cpu usage metric
     """
     gauge = DerivedDoubleGauge(ProcessCPUMetric.NAME,
                                'Process CPU usage as a percentage',
                                'percentage', [])
     gauge.create_default_time_series(ProcessCPUMetric.get_value)
     # From the psutil docs: the first time this method is called with
     # interval = None it will return a meaningless 0.0 value which you are
     # supposed to ignore. Call cpu_percent() with process once so that the
     # subsequent calls from the gauge will be meaningful.
     PROCESS.cpu_percent()
     return gauge
コード例 #4
0
def get_processor_time_metric():
    """ Returns a derived gauge for the processor time.

    Processor time is defined as a float representing the current system
    wide CPU utilization minus idle CPU time as a percentage. Idle CPU
    time is defined as the time spent doing nothing. Return values range
    from 0.0 to 100.0 inclusive.

    :rtype: :class:`opencensus.metrics.export.gauge.DerivedDoubleGauge`
    :return: The gauge representing the processor time metric
    """
    gauge = DerivedDoubleGauge(PROCESSOR_TIME,
                               'Processor time as a percentage', 'percentage',
                               [])
    gauge.create_default_time_series(get_processor_time)
    # From the psutil docs: the first time this method is called with interval
    # = None it will return a meaningless 0.0 value which you are supposed to
    # ignore. Call cpu_percent() once so that the subsequent calls from the
    # gauge will be meaningful.
    psutil.cpu_times_percent()
    return gauge
コード例 #5
0
 def __init__(self, options):
     self._options = options
     self._instrumentation_key = options.instrumentation_key
     self._feature = _StatsbeatFeature.NONE
     if options.enable_local_storage:
         self._feature |= _StatsbeatFeature.DISK_RETRY
     if options.credential:
         self._feature |= _StatsbeatFeature.AAD
     self._stats_lock = threading.Lock()
     self._vm_data = {}
     self._vm_retry = True
     self._rp = _RP_NAMES[3]
     self._os_type = platform.system()
     # Attach metrics - metrics related to rp (resource provider)
     self._attach_metric = LongGauge(
         _ATTACH_METRIC_NAME,
         'Statsbeat metric related to rp integrations',
         'count',
         _get_attach_properties(),
     )
     # Keep track of how many iterations until long export
     self._long_threshold_count = 0
     # Network metrics - metrics related to request calls to Breeze
     self._network_metrics = {}
     # Map of gauge function -> metric
     # Gauge function is the callback used to populate the metric value
     self._network_metrics[_get_success_count_value] = DerivedLongGauge(
         _REQ_SUC_COUNT_NAME,
         'Statsbeat metric tracking request success count',
         'count',
         _get_network_properties(),
     )
     self._network_metrics[_get_failure_count_value] = DerivedLongGauge(
         _REQ_FAIL_COUNT_NAME,
         'Statsbeat metric tracking request failure count',
         'count',
         _get_network_properties(),
     )
     self._network_metrics[
         _get_average_duration_value] = DerivedDoubleGauge(  # noqa: E501
             _REQ_DURATION_NAME,
             'Statsbeat metric tracking average request duration',
             'count',
             _get_network_properties(),
         )
     self._network_metrics[_get_retry_count_value] = DerivedLongGauge(
         _REQ_RETRY_NAME,
         'Statsbeat metric tracking request retry count',
         'count',
         _get_network_properties(),
     )
     self._network_metrics[_get_throttle_count_value] = DerivedLongGauge(
         _REQ_THROTTLE_NAME,
         'Statsbeat metric tracking request throttle count',
         'count',
         _get_network_properties(),
     )
     self._network_metrics[_get_exception_count_value] = DerivedLongGauge(
         _REQ_EXCEPTION_NAME,
         'Statsbeat metric tracking request exception count',
         'count',
         _get_network_properties(),
     )
     # feature/instrumentation metrics
     # metrics related to what features and instrumentations are enabled
     self._feature_metric = LongGauge(
         _FEATURE_METRIC_NAME,
         'Statsbeat metric related to features enabled',  # noqa: E501
         'count',
         _get_feature_properties(),
     )
     # Instrumentation metric uses same name/properties as feature
     self._instrumentation_metric = LongGauge(
         _FEATURE_METRIC_NAME,
         'Statsbeat metric related to instrumentations enabled',  # noqa: E501
         'count',
         _get_feature_properties(),
     )