folder_output = "/home/prassanna/Development/workspace/CamVid_scripts/FrameworkDump3/crf/" fh, filenames_ext = listFiles(folder_energy, ext_energy) filenames = [f.replace(ext_energy, "") for f in filenames_ext] for i in range(0, len(filenames)): print i, "->", filenames[i] print "Loading all files..." energies = ocv.read_xml_file(folder_energy + filenames[i] + ext_energy, "prob") segments = ocv.read_xml_file( folder_superpixels + filenames[i] + ext_superpixels, "Segments") nbrs = ocv.read_xml_file(folder_superpixels + filenames[i] + ext_nbr, "Neighbours") ann = ocv.read_xml_file(folder_superpixels + filenames[i] + ext_ann, "Ann") gt_labels = annImagetoLabels(ann, segments) print "Necessary Transformations..." edge_list, edge_features = SuperpixelAdjacency.convertToAdjacencyListPotts( nbrs, segments, gt_labels) #edge_features.shape=len(edge_features),1 x = (energies, edge_list, edge_features) print "Inference...." predlabelList = crf.inference(x, ssvm.w, relaxed=True) print "Final Operations..." predAnn = predLabelsToAnnIndex(segments, predlabelList) predImage = labelsToImage(label_list, predAnn, True) ocv.write_xml_file(folder_output + filenames[i] + ext_out_ann, "Ann", predAnn) cv2.imwrite(folder_output + filenames[i] + ext_out_image, predImage)
#gt_global = list(); #desc_global = list(); #cv2.namedWindow("Original"); #cv2.namedWindow("Predicted"); for i in range(0, len(filenames_sup)): print i, "->", filenames_sup[i] segments = ocv.read_xml_file(folder_location + filenames_sup[i], "Segments") desc = ocv.read_xml_file(folder_location + filenames_desc[i], "Descriptors") #ann = ocv.read_xml_file(folder_location+filenames_ann[i], "Ann") print "Transforming.." desc = imp.transform(desc) print "Predicting.." for k in range(0, len(clfs)): clf = clfs[k] folder_out = folder_outs[k] pred_labels = clf.predict(desc) predAnn = predLabelsToAnnIndex(segments, pred_labels) #annImage = labelsToImage(dataset_colours, ann); predImage = labelsToImage(dataset_colours, predAnn) #cv2.imshow("Original", annImage); #cv2.imshow("Predicted", predImage); ocv.write_xml_file(folder_out + filenames_out[i] + ".xml", "Ann", predAnn) cv2.imwrite(folder_out + filenames_out[i], predImage) #cv2.waitKey(0) #cv2.destroyAllWindows();
folder_location = "/home/prassanna/Development/workspace/CamVid_scripts/FrameworkDump4/Train/" #Getting filenames for Random Forests filenames, filenames_desc = listFiles(folder_location, ext_desc) filenames_sup = [ filename.replace(ext_desc, ext_sup) for filename in filenames_desc ] filenames_ann = [ filename.replace(ext_desc, ext_ann) for filename in filenames_desc ] filename_extless = [ filename.replace(ext_desc, "") for filename in filenames_desc ] gt_global = list() desc_global = list() for i in range(0, 1): #len(filenames_sup)): print i, "->", filenames_sup[i] for j in range(0, len(clfs)): print "On classifier : ", j desc = ocv.read_xml_file(folder_location + filenames_desc[i], "Descriptors") desc = imp.transform(desc) pred = clfs[j].predict_log_proba(desc) #predEnergy = clf.predict_log_proba(desc); ocv.write_xml_file(folder_out[j] + filename_extless[i] + "_prob.xml", "prob", pred) #ocv.write_xml_file(folder_out+filenames_extless[i]+"_energy.xml", "energy", predEnergy)