def main(): ######################################## # Initialization things with arguments # ######################################## logger.config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = {"output_path": '../../../outputs/dae/mnist/'} dae = DenoisingAutoencoder(config=config, dataset=mnist) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(dae, mnist) optimizer.train() # Save some reconstruction output images import opendeep.data.dataset as datasets n_examples = 100 test_xs = mnist.getDataByIndices(indices=range(n_examples), subset=datasets.TEST) dae.create_reconstruction_image(test_xs)
def run_dae(): ######################################## # Initialization things with arguments # ######################################## config_root_logger() log.info("Creating a new DAE") mnist = MNIST() config = {"output_path": '../../../../outputs/dae/mnist/'} dae = DenoisingAutoencoder(config=config, dataset=mnist) # # Load initial weights and biases from file # params_to_load = 'dae_params.pkl' # dae.load_params(params_to_load) optimizer = AdaDelta(dae, mnist) optimizer.train() # Save some reconstruction output images import opendeep.data.dataset as datasets n_examples = 100 test_xs = mnist.getDataByIndices(indices=range(n_examples), subset=datasets.TEST) dae.create_reconstruction_image(test_xs)
import logging import opendeep.log.logger as logger logger.config_root_logger() log = logging.getLogger(__name__) log.info("Creating softmax!") # grab the MNIST dataset mnist = MNIST() # create the softmax classifier s = SoftmaxLayer(input_size=28 * 28, output_size=10, out_as_probs=False) # make an optimizer to train it (AdaDelta is a good default) optimizer = AdaDelta(model=s, dataset=mnist, n_epoch=20) # perform training! optimizer.train() # test it on some images! test_data = mnist.getDataByIndices(indices=range(25), subset=TEST) # use the predict function! preds = s.predict(test_data) print '-------' print preds print mnist.getLabelsByIndices(indices=range(25), subset=TEST) print print del mnist del s del optimizer log.info("Creating softmax with categorical cross-entropy!") # grab the MNIST dataset mnist = MNIST(one_hot=True)
from opendeep.data.standard_datasets.image.mnist import MNIST from opendeep.optimization.adadelta import AdaDelta # grab the MNIST dataset mnist = MNIST() # create your shiny new DAE dae = DenoisingAutoencoder() # make an optimizer to train it (AdaDelta is a good default) optimizer = AdaDelta(model=dae, dataset=mnist) # perform training! optimizer.train() # test it on some images! test_data = mnist.getDataByIndices(indices=range(25), subset=TEST) corrupted_test = salt_and_pepper(test_data, 0.4) # use the predict function! reconstructed_images = dae.predict(test_data) # create an image from this reconstruction! # imports for working with tiling outputs into one image from opendeep.utils.image import tile_raster_images import numpy import PIL # stack the image matrices together in three 5x5 grids next to each other using numpy stacked = numpy.vstack([ numpy.vstack([ test_data[i * 5:(i + 1) * 5], corrupted_test.eval()[i * 5:(i + 1) * 5], reconstructed_images[i * 5:(i + 1) * 5]