def main(): data = TextDataset( path='../../../../datasets/shakespeare_input.txt', source= "http://cs.stanford.edu/people/karpathy/char-rnn/shakespeare_input.txt", target_n_future=1, sequence_length=50) rnn = RNN(outdir='outputs/rnn/', input_size=len(data.vocab), hidden_size=128, output_size=len(data.vocab), layers=2, activation='softmax', hidden_activation='relu', mrg=RNG_MRG.MRG_RandomStreams(1), weights_init='uniform', weights_interval='montreal', bias_init=0.0, r_weights_init='identity', r_bias_init=0.0, cost_function='nll', cost_args=None, noise='dropout', noise_level=.7, noise_decay='exponential', noise_decay_amount=.99, direction='forward') cost_monitor = Monitor("cost", rnn.get_train_cost(), train=False, valid=True, test=True) optimizer = RMSProp(model=rnn, dataset=data, grad_clip=5., hard_clip=False, learning_rate=2e-3, lr_decay='exponential', lr_decay_factor=0.97, decay=0.95, batch_size=50, epochs=50) # optimizer = AdaDelta(model=gsn, dataset=mnist, n_epoch=200, batch_size=100, learning_rate=1e-6) optimizer.train(monitor_channels=cost_monitor)
def main(sequence): rnn_gsn = RNN_GSN() # data! (needs to be 3d for rnn). mnist = MNIST(sequence_number=sequence, seq_3d=True, seq_length=50) # optimizer! optimizer = RMSProp(model=rnn_gsn, dataset=mnist, epochs=500, batch_size=50, save_freq=10, stop_patience=30, stop_threshold=.9995, learning_rate=1e-6, decay=.95, max_scaling=1e5, grad_clip=5., hard_clip=False) # train! optimizer.train()
def main(sequence): rnn_gsn = RNN_GSN() # data! (needs to be 3d for rnn). mnist = MNIST(sequence_number=sequence, seq_3d=True, seq_length=50) # optimizer! optimizer = RMSProp( model=rnn_gsn, dataset=mnist, epochs=500, batch_size=50, save_freq=10, stop_patience=30, stop_threshold=.9995, learning_rate=1e-6, decay=.95, max_scaling=1e5, grad_clip=5., hard_clip=False ) # train! optimizer.train()
def main(): data = TextDataset(path='../../../../datasets/shakespeare_input.txt', source="http://cs.stanford.edu/people/karpathy/char-rnn/shakespeare_input.txt", target_n_future=1, sequence_length=50) rnn = RNN(outdir='outputs/rnn/', input_size=len(data.vocab), hidden_size=128, output_size=len(data.vocab), layers=2, activation='softmax', hidden_activation='relu', mrg=RNG_MRG.MRG_RandomStreams(1), weights_init='uniform', weights_interval='montreal', bias_init=0.0, r_weights_init='identity', r_bias_init=0.0, cost_function='nll', cost_args=None, noise='dropout', noise_level=.7, noise_decay='exponential', noise_decay_amount=.99, direction='forward') cost_monitor = Monitor("cost", rnn.get_train_cost(), train=False, valid=True, test=True) optimizer = RMSProp(model=rnn, dataset=data, grad_clip=5., hard_clip=False, learning_rate=2e-3, lr_decay='exponential', lr_decay_factor=0.97, decay=0.95, batch_size=50, epochs=50) # optimizer = AdaDelta(model=gsn, dataset=mnist, n_epoch=200, batch_size=100, learning_rate=1e-6) optimizer.train(monitor_channels=cost_monitor)