def run_mlp(): # test the new way to automatically fill in inputs for models mlp = Prototype() x = ((None, 784), matrix("x")) mlp.add(Dense(inputs=x, outputs=1000, activation='rectifier')) mlp.add(Dense, outputs=1500, activation='tanh') mlp.add(Softmax, outputs=10, out_as_probs=False) # define our loss to optimize for the model (and the target variable) # targets from MNIST are int64 numbers 0-9 y = lvector('y') loss = Neg_LL(inputs=mlp.models[-1].p_y_given_x, targets=y, one_hot=False) mnist = MNIST() optimizer = AdaDelta(model=mlp, loss=loss, dataset=mnist, epochs=10) optimizer.train() test_data, test_labels = mnist.test_inputs, mnist.test_targets test_data = test_data[:25] test_labels = test_labels[:25] # use the run function! yhat = mlp.run(test_data) print('-------') print('Prediction: %s' % str(yhat)) print('Actual: %s' % str(test_labels.astype('int32')))
def create_mlp(): # define the model layers relu_layer1 = Dense(input_size=784, output_size=1000, activation='rectifier') relu_layer2 = Dense(inputs_hook=(1000, relu_layer1.get_outputs()), output_size=1000, activation='rectifier') class_layer3 = SoftmaxLayer(inputs_hook=(1000, relu_layer2.get_outputs()), output_size=10, out_as_probs=False) # add the layers as a Prototype mlp = Prototype(layers=[relu_layer1, relu_layer2, class_layer3]) mnist = MNIST() optimizer = AdaDelta(model=mlp, dataset=mnist, epochs=20) optimizer.train() test_data, test_labels = mnist.test_inputs[:25], mnist.test_targets[:25] # use the run function! preds = mlp.run(test_data) log.info('-------') log.info("predicted: %s", str(preds)) log.info("actual: %s", str(test_labels.astype('int32')))
def create_mlp(): # define the model layers relu_layer1 = Dense(input_size=784, output_size=1000, activation='rectifier') relu_layer2 = Dense(inputs_hook=(1000, relu_layer1.get_outputs()), output_size=1000, activation='rectifier') class_layer3 = SoftmaxLayer(inputs_hook=(1000, relu_layer2.get_outputs()), output_size=10, out_as_probs=False) # add the layers as a Prototype mlp = Prototype(layers=[relu_layer1, relu_layer2, class_layer3]) mnist = MNIST() optimizer = AdaDelta(model=mlp, dataset=mnist, epochs=20) optimizer.train() test_data, test_labels = mnist.test_inputs[:25], mnist.test_targets[:25] # use the run function! preds = mlp.run(test_data) log.info('-------') log.info("predicted: %s",str(preds)) log.info("actual: %s",str(test_labels.astype('int32')))
# first need a target variable labels = T.lvector('ys') # negative log-likelihood for classification cost loss = Neg_LL(inputs=lenet.models[-1].p_y_given_x, targets=labels, one_hot=False) # make a monitor to view average accuracy per batch accuracy = Monitor(name='Accuracy', expression=1 - (T.mean(T.neq(lenet.models[-1].y_pred, labels))), valid=True, test=True) # Now grab our MNIST dataset. The version given here has each image as a single 784-dimensional vector. # because convolutions work over 2d, let's reshape our data into the (28,28) images they originally were # (only one channel because they are black/white images not rgb) mnist = MNIST() process_image = lambda img: np.reshape(img, (1, 28, 28)) mnist.train_inputs = ModifyStream(mnist.train_inputs, process_image) mnist.valid_inputs = ModifyStream(mnist.valid_inputs, process_image) mnist.test_inputs = ModifyStream(mnist.test_inputs, process_image) # finally define our optimizer and train the model! optimizer = AdaDelta(model=lenet, dataset=mnist, loss=loss, epochs=10, batch_size=64) # train! optimizer.train(monitor_channels=accuracy)
################ # Now that our model is complete, let's define the loss function to optimize # first need a target variable labels = T.lvector('ys') # negative log-likelihood for classification cost loss = Neg_LL(inputs=lenet.models[-1].p_y_given_x, targets=labels, one_hot=False) # make a monitor to view average accuracy per batch accuracy = Monitor(name='Accuracy', expression=1-(T.mean(T.neq(lenet.models[-1].y_pred, labels))), valid=True, test=True) # Now grab our MNIST dataset. The version given here has each image as a single 784-dimensional vector. # because convolutions work over 2d, let's reshape our data into the (28,28) images they originally were # (only one channel because they are black/white images not rgb) mnist = MNIST() process_image = lambda img: np.reshape(img, (1, 28, 28)) mnist.train_inputs = ModifyStream(mnist.train_inputs, process_image) mnist.valid_inputs = ModifyStream(mnist.valid_inputs, process_image) mnist.test_inputs = ModifyStream(mnist.test_inputs, process_image) # finally define our optimizer and train the model! optimizer = AdaDelta( model=lenet, dataset=mnist, loss=loss, epochs=10, batch_size=64 ) # train! optimizer.train(monitor_channels=accuracy)
print "Creating model..." in_shape = (None, 28*28) in_var = matrix('xs') mlp = Prototype() mlp.add(Dense(inputs=(in_shape, in_var), outputs=512, activation='relu')) mlp.add(Noise, noise='dropout', noise_level=0.5) mlp.add(Dense, outputs=512, activation='relu') mlp.add(Noise, noise='dropout', noise_level=0.5) mlp.add(Softmax, outputs=10, out_as_probs=False) print "Training..." target_var = lvector('ys') loss = Neg_LL(inputs=mlp.models[-1].p_y_given_x, targets=target_var, one_hot=False) optimizer = AdaDelta(model=mlp, loss=loss, dataset=data, epochs=10) optimizer.train() print "Predicting..." predictions = mlp.run(data.test_inputs) print "Accuracy: ", float(sum(predictions==data.test_targets)) / len(data.test_targets) # now run the dataset from kaggle test_features = np.array(pd.read_csv("test.csv")) predictions = mlp.run(test_features) f = open('mlp_ predictions', 'w') for i, digit in enumerate(predictions): f.write(str(i+1)+","+str(digit)+"\n") f.close()
labels = T.lvector('ys') loss = Neg_LL(inputs=lenet.models[-1].get_outputs(), targets=labels, one_hot=False) #accuracy = Monitor(name="Accuracy", expression=1-(T.mean(T.neq(lenet.models[-1].y_pred, labels))), # valid=True, test=True) def greyscale_image(img): img = img.transpose(2, 1, 0) arr = np.average(img, 0).astype(int) return arr[None, :, :] def target_preprocess(img): x, y, _ = filter_test.find_goals(img)[0] return x/img.shape[0], y/img.shape[1] data = ImageDataset("training_data/filtered_pics/", test_filter="**1.jpg", valid_filter="**2.jpg", targets_preprocess=target_preprocess, inputs_preprocess=greyscale_image) print("Building optimizer") optimizer = AdaDelta(model=lenet, loss=loss, dataset=data, epochs=10) optimizer.train() print("Predicting...") predictions = lenet.run(data.test_inputs) print("Accuracy: ", float(sum(predictions == data.test_targets)) / len(data.test_targets))