コード例 #1
0
ファイル: lighting.py プロジェクト: vstarlinger/opendr
    def on_changed(self, which):
        if not hasattr(self, '_lpl'):
            self.add_dterm('_lpl', maximum(multiply(a=multiply()), 0.0))
        if not hasattr(self, 'ldn'):
            self.ldn = LightDotNormal(self.v.r.size/3)            
        if not hasattr(self, 'vn'):

            logger.info('LambertianPointLight using auto-normals. This will be slow for derivative-free computations.')
            self.vn = VertNormals(f=self.f, v=self.v)
            self.vn.needs_autoupdate = True
        if 'v' in which and hasattr(self.vn, 'needs_autoupdate') and self.vn.needs_autoupdate:
            self.vn.v = self.v
        
        ldn_args = {k: getattr(self, k) for k in which if k in ('light_pos', 'v', 'vn')}
        if len(ldn_args) > 0:
            self.ldn.set(**ldn_args)
            self._lpl.a.a.a = self.ldn.reshape((-1,1))

        if 'num_verts' in which or 'light_color' in which:
            # nc = self.num_channels
            # IS = np.arange(self.num_verts*nc)
            # JS = np.repeat(np.arange(self.num_verts), 3)
            # data = (row(self.light_color)*np.ones((self.num_verts, 3))).ravel()
            # mtx = sp.csc_matrix((data, (IS,JS)), shape=(self.num_verts*3, self.num_verts))
            self._lpl.a.a.b = self.light_color.reshape((1,self.num_channels))

        if 'vc' in which:
            self._lpl.a.b = self.vc.reshape((-1,self.num_channels))
コード例 #2
0
    def vertex_visibility_angle(self, camera):
        n = VertNormals(camera.v, self.f)
        v_cam = camera.v.r.dot(cv2.Rodrigues(camera.rt.r)[0]) + camera.t.r
        n_cam = n.r.dot(cv2.Rodrigues(camera.rt.r)[0])

        return np.sum(v_cam / (np.linalg.norm(v_cam, axis=1).reshape(-1, 1)) *
                      -1 * n_cam,
                      axis=1)
コード例 #3
0
ファイル: test_opendr.py プロジェクト: zuru/DSS
def test_earth():
    m = get_earthmesh(trans=ch.array([0, 0, 0]), rotation=ch.zeros(3))
    # Create V, A, U, f: geometry, brightness, camera, renderer
    V = ch.array(m.v)
    A = SphericalHarmonics(vn=VertNormals(v=V, f=m.f),
                           components=[3., 2., 0., 0., 0., 0., 0., 0., 0.],
                           light_color=ch.ones(3))
    # camera
    U = ProjectPoints(v=V,
                      f=[w, w],
                      c=[w / 2., h / 2.],
                      k=ch.zeros(5),
                      t=ch.zeros(3),
                      rt=ch.zeros(3))
    f = TexturedRenderer(vc=A,
                         camera=U,
                         f=m.f,
                         bgcolor=[0., 0., 0.],
                         texture_image=m.texture_image,
                         vt=m.vt,
                         ft=m.ft,
                         frustum={
                             'width': w,
                             'height': h,
                             'near': 1,
                             'far': 20
                         })

    # Parameterize the vertices
    translation, rotation = ch.array([0, 0, 8]), ch.zeros(3)
    f.v = translation + V.dot(Rodrigues(rotation))

    observed = f.r
    np.random.seed(1)
    # this is reactive
    # in the sense that changes to values will affect function which depend on them.
    translation[:] = translation.r + np.random.rand(3)
    rotation[:] = rotation.r + np.random.rand(3) * .2
    # Create the energy
    E_raw = f - observed
    E_pyr = gaussian_pyramid(E_raw, n_levels=6, normalization='size')

    Image.fromarray((observed * 255).astype(np.uint8)).save(
        os.path.join(save_dir, "reference.png"))
    step = 0
    Image.fromarray((f.r * 255).astype(np.uint8)).save(
        os.path.join(save_dir, "step_{:05d}.png".format(step)))

    print('OPTIMIZING TRANSLATION, ROTATION, AND LIGHT PARMS')
    free_variables = [translation, rotation]
    ch.minimize({'pyr': E_pyr}, x0=free_variables, callback=create_callback(f))
    ch.minimize({'raw': E_raw}, x0=free_variables, callback=create_callback(f))
コード例 #4
0
def InstanceSMPL(frame_id):

    print g_paramfiles[frame_id]

    trans = []
    betas = []
    poses = []
    exps = []
    with open(g_paramfiles[frame_id]) as f:
        SMPLParams = pickle.load(f)
    if not type(SMPLParams) == list:
        smplParam = copy.deepcopy(SMPLParams)
        SMPLParams = []
        SMPLParams.append(smplParam)
    for idx, cParam in enumerate(SMPLParams):
        trans.append(cParam['trans'])
        betas.append(cParam['betas'])
        poses.append(cParam['pose'])
        if g_args.type == 'ADAM':
            exps.append(cParam['faces'])
            inds = adamWrapper.f + idx * adamWrapper.size[0]
        else:
            inds = smplWrapper.f + idx * smplWrapper.size[0]
        if idx == 0:
            cinds = inds
        else:
            cinds = np.concatenate((cinds, inds), axis=0)
    trans = np.asarray(trans)
    betas = np.asarray(betas)
    poses = np.asarray(poses)
    exps = np.asarray(exps)
    if (g_args.type == 'SMPL'):
        v, _ = smplWrapper(betas, poses)
    elif (g_args.type == 'ADAM'):
        v, _ = adamWrapper(betas, poses, exps)
    v += np.expand_dims(trans, axis=1)
    v = np.reshape(v, (-1, 3))
    if (g_args.type == 'SMPL'):
        v = v * 100.0
    #calculating normals
    from opendr.geometry import VertNormals
    vns = VertNormals(f=cinds, v=v)
    vns = sklearn.preprocessing.normalize(vns)
    return v, vns, cinds
コード例 #5
0
def simple_renderer(rn,
                    verts,
                    faces,
                    yrot=np.radians(120),
                    color=colors['light_pink']):
    # Rendered model color
    rn.set(v=verts, f=faces, vc=color, bgcolor=np.zeros(3))

    rn.vc = VertNormals(verts, faces, True).r.reshape((-1,3))
    rn.vc = (rn.vc + 1.0)*0.5
    # print("VN!")
    # print(vn)

    # albedo = rn.vc

    # # Construct Back Light (on back right corner)
    # rn.vc = LambertianPointLight(
    #     f=rn.f,
    #     v=rn.v,
    #     num_verts=len(rn.v),
    #     light_pos=_rotateY(np.array([-200, -100, -100]), yrot),
    #     vc=albedo,
    #     light_color=np.array([1, 1, 1]))

    # # Construct Left Light
    # rn.vc += LambertianPointLight(
    #    f=rn.f,
    #    v=rn.v,
    #    num_verts=len(rn.v),
    #    light_pos=_rotateY(np.array([800, 10, 300]), yrot),
    #    vc=albedo,
    #    light_color=np.array([1, 1, 1]))

    # # Construct Right Light
    # rn.vc += LambertianPointLight(
    #    f=rn.f,
    #    v=rn.v,
    #    num_verts=len(rn.v),
    #    light_pos=_rotateY(np.array([-500, 500, 1000]), yrot),
    #    vc=albedo,
    #    light_color=np.array([.7, .7, .7]))

    return rn.r
コード例 #6
0
def main(consensus_file, camera_file, video_file, pose_file, masks_file, out,
         model_file, resolution, num, first_frame, last_frame, display):
    # load data
    with open(model_file, 'rb') as fp:
        model_data = pkl.load(fp)

    with open(camera_file, 'rb') as fp:
        camera_data = pkl.load(fp)

    with open(consensus_file, 'rb') as fp:
        consensus_data = pkl.load(fp)

    pose_data = h5py.File(pose_file, 'r')
    poses = pose_data['pose'][first_frame:last_frame]
    trans = pose_data['trans'][first_frame:last_frame]
    masks = h5py.File(masks_file, 'r')['masks'][first_frame:last_frame]
    num_frames = masks.shape[0]
    indices_texture = np.ceil(np.arange(num) * num_frames * 1. / num).astype(
        np.int)

    vt = np.load('assets/basicModel_vt.npy')
    ft = np.load('assets/basicModel_ft.npy')

    # init
    base_smpl = Smpl(model_data)
    base_smpl.betas[:] = consensus_data['betas']
    base_smpl.v_personal[:] = consensus_data['v_personal']

    bgcolor = np.array([1., 0.2, 1.])
    iso = Isomapper(vt, ft, base_smpl.f, resolution, bgcolor=bgcolor)
    iso_vis = IsoColoredRenderer(vt, ft, base_smpl.f, resolution)
    camera = ProjectPoints(t=camera_data['camera_t'],
                           rt=camera_data['camera_rt'],
                           c=camera_data['camera_c'],
                           f=camera_data['camera_f'],
                           k=camera_data['camera_k'],
                           v=base_smpl)
    frustum = {
        'near': 0.1,
        'far': 1000.,
        'width': int(camera_data['width']),
        'height': int(camera_data['height'])
    }
    rn_vis = ColoredRenderer(f=base_smpl.f,
                             frustum=frustum,
                             camera=camera,
                             num_channels=1)

    cap = cv2.VideoCapture(video_file)
    for _ in range(first_frame):
        cap.grab()

    # get part-textures
    i = first_frame

    tex_agg = np.zeros((resolution, resolution, 25, 3))
    tex_agg[:] = np.nan
    normal_agg = np.ones((resolution, resolution, 25)) * 0.2

    vn = VertNormals(f=base_smpl.f, v=base_smpl)
    static_indices = np.indices((resolution, resolution))

    while cap.isOpened() and i < indices_texture[-1]:
        if i in indices_texture:
            log.info('Getting part texture from frame {}...'.format(i))
            _, frame = cap.read()

            mask = np.array(masks[i], dtype=np.uint8)
            pose_i = np.array(poses[i], dtype=np.float32)
            trans_i = np.array(trans[i], dtype=np.float32)

            base_smpl.pose[:] = pose_i
            base_smpl.trans[:] = trans_i

            # which faces have been seen and are projected into the silhouette?
            visibility = rn_vis.visibility_image.ravel()
            visible = np.nonzero(visibility != 4294967295)[0]

            proj = camera.r
            in_viewport = np.logical_and(
                np.logical_and(
                    np.round(camera.r[:, 0]) >= 0,
                    np.round(camera.r[:, 0]) < frustum['width']),
                np.logical_and(
                    np.round(camera.r[:, 1]) >= 0,
                    np.round(camera.r[:, 1]) < frustum['height']),
            )
            in_mask = np.zeros(camera.shape[0], dtype=np.bool)
            idx = np.round(proj[in_viewport][:, [1, 0]].T).astype(
                np.int).tolist()
            in_mask[in_viewport] = mask[idx]

            faces_in_mask = np.where(np.min(in_mask[base_smpl.f], axis=1))[0]
            visible_faces = np.intersect1d(faces_in_mask, visibility[visible])

            # get the current unwrap
            part_tex = iso.render(frame / 255., camera, visible_faces)

            # angle under which the texels have been seen
            points = np.hstack((proj, np.ones((proj.shape[0], 1))))
            points3d = camera.unproject_points(points)
            points3d /= np.linalg.norm(points3d, axis=1).reshape(-1, 1)
            alpha = np.sum(points3d * -vn.r, axis=1).reshape(-1, 1)
            alpha[alpha < 0] = 0
            iso_normals = iso_vis.render(alpha)[:, :, 0]
            iso_normals[np.all(part_tex == bgcolor, axis=2)] = 0

            # texels to consider
            part_mask = np.zeros((resolution, resolution))
            min_normal = np.min(normal_agg, axis=2)
            part_mask[iso_normals > min_normal] = 1.

            # update best seen texels
            where = np.argmax(np.atleast_3d(iso_normals) - normal_agg, axis=2)

            idx = np.dstack(
                (static_indices[0], static_indices[1], where))[part_mask == 1]
            tex_agg[list(idx[:, 0]),
                    list(idx[:, 1]),
                    list(idx[:, 2])] = part_tex[part_mask == 1]
            normal_agg[list(idx[:, 0]),
                       list(idx[:, 1]),
                       list(idx[:, 2])] = iso_normals[part_mask == 1]

            if display:
                im.show(part_tex, id='part_tex', waittime=1)

        else:
            cap.grab()

        i += 1

    # merge textures
    log.info('Computing median texture...')
    tex_median = np.nanmedian(tex_agg, axis=2)

    log.info('Inpainting unseen areas...')
    where = np.max(normal_agg, axis=2) > 0.2

    tex_mask = iso.iso_mask
    mask_final = np.float32(where)

    kernel_size = np.int(resolution * 0.02)
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    inpaint_area = cv2.dilate(tex_mask, kernel) - mask_final

    tex_final = cv2.inpaint(np.uint8(tex_median * 255),
                            np.uint8(inpaint_area * 255), 3, cv2.INPAINT_TELEA)

    cv2.imwrite(out, tex_final)
    log.info('Done.')
コード例 #7
0
def fit_adam_to_target_v(param_init, target_v):

    # meshlib = meshWrapper(lib_file=os.path.join(rootpath, '../../build/libPythonWrapper.so'))
    # meshlib.load_totalmodel()
    smpl_v = smplWrapper.v_template * 100.0

    vns_smpl = VertNormals(f=smplWrapper.f, v=smpl_v)
    vns_smpl = sklearn.preprocessing.normalize(vns_smpl)

    adam_v = copy.deepcopy(adamWrapper.v_template)
    adam_vNum = adam_v.shape[0]
    # target_adam_v = np.zeros(adam_v.shape)
    target_adam_vid = np.array(range(adam_vNum), dtype=float)
    target_adam_vid = np.reshape(target_adam_vid, (-1, 1))

    target_v = np.array(target_v)
    # for nIter in range(10):
    #     #ICP
    tJointSmpl = np.matmul(coco_reg, smpl_v)
    tJointAdam = np.zeros(tJointSmpl.shape)
    tJointAdam[dome_to_angjoo, :] = tJointSmpl

    p_ = (0 - param_init['pose']).tolist()
    b_ = param_init['betas'].tolist()
    t_ = param_init['trans'].tolist()
    f_ = param_init['faces'].tolist()
    meshlib.set_value(t_, b_, p_, f_)

    AlignParams = []
    cDist = 0
    for nIter in range(5):
        cDist = 0

        # vns_adam = VertNormals(f=adamWrapper.f, v=adam_v)
        # vns_adam = sklearn.preprocessing.normalize(vns_adam)

        # for idx,cv in enumerate(adam_v):
        #     dv = nl.norm(smpl_v - cv,axis=1)
        #     dvn = nl.norm(vns_smpl - vns_adam[idx],axis=1)
        #     dv_total = dv+dvn
        #     min_v = np.argmin(dv_total)
        #     target_adam_v[idx] = smpl_v[min_v]
        #     cDist += dv_total[min_v]

        tVertsAdam = np.hstack((target_v, target_adam_vid))
        #tVertsAdam = tVertsAdam[handsId,:]

        lHand = np.zeros((21, 3))
        rHand = np.zeros((21, 3))
        tJointFace = np.zeros((70, 3))

        fitJointData = np.vstack((tJointAdam, [0, 0,
                                               0], rHand, lHand, tJointFace))
        #meshlib.reset_value()
        print fitJointData
        print tVertsAdam
        meshlib.adam_smpl_fit(fitJointData, tVertsAdam)
        pose = np.frombuffer(meshlib.cpose, float)
        betas = np.frombuffer(meshlib.ccoeff, float)
        trans = np.frombuffer(meshlib.ctrans, float)
        faces = np.frombuffer(meshlib.cface_coeff, float)
        pose = 0 - pose

        wPose = []
        wBetas = []
        wTrans = []
        wFaces = []
        wPose.append(pose)
        wBetas.append(betas)
        wTrans.append(trans)
        wFaces.append(faces)

        wTrans = np.asarray(wTrans)
        wBetas = np.asarray(wBetas)
        wPose = np.asarray(wPose)
        wFaces = np.asarray(wFaces)

        # new_adam_v,_ = adamWrapper(wBetas,wPose,wFaces)
        # new_adam_v += np.expand_dims(wTrans, axis=1)
        # new_adam_v = np.reshape(new_adam_v, (-1, 3))
        # adam_v = new_adam_v
        c_param = {
            "pose": pose,
            "betas": betas,
            "trans": trans,
            "faces": faces,
            "nIter": nIter
        }

        AlignParams.append(copy.deepcopy(c_param))
        print 'nIter {} with dV{}'.format(nIter, cDist)
    with open("alignParam.pkl", 'wb') as f:
        pickle.dump(AlignParams, f, protocol=pickle.HIGHEST_PROTOCOL)
コード例 #8
0
def loadSMPL(frame_id):
    global vn_buffers, vts_buffers, inds_buffers, uvi_buffers, mask_buffers, face_num
    print g_paramfiles[frame_id]
    cvts = []
    cinds = []
    cvns = []

    if g_args.is_obj:
        v, vns, cinds = loadObj(g_objfiles[frame_id])
    else:
        with open(g_paramfiles[frame_id]) as f:
            SMPLParams = pickle.load(f)
        if not type(SMPLParams) == list:
            smplParam = copy.deepcopy(SMPLParams)
            SMPLParams = []
            SMPLParams.append(smplParam)
        trans = []
        betas = []
        poses = []
        exps = []

        for idx, cParam in enumerate(SMPLParams):
            trans.append(cParam['trans'])
            betas.append(cParam['betas'])
            poses.append(cParam['pose'])
            if g_args.type == 'ADAM':
                exps.append(cParam['faces'])
                inds = adamWrapper.f + idx * adamWrapper.size[0]
            else:
                inds = smplWrapper.f + idx * smplWrapper.size[0]
            if idx == 0:
                cinds = inds
            else:
                cinds = np.concatenate((cinds, inds), axis=0)
        trans = np.asarray(trans)
        betas = np.asarray(betas)
        poses = np.asarray(poses)
        exps = np.asarray(exps)
        if (g_args.type == 'SMPL'):
            v, _ = smplWrapper(betas, poses)
        elif (g_args.type == 'ADAM'):
            v, _ = adamWrapper(betas, poses, exps)
        v += np.expand_dims(trans, axis=1)
        v = np.reshape(v, (-1, 3))
        if (g_args.type == 'SMPL'):
            v = v * 100.0
        #calculating normals
        from opendr.geometry import VertNormals
        vns = VertNormals(f=cinds, v=v)
        #print vn.shape
        #vns += Nor
        vns = sklearn.preprocessing.normalize(vns)
        #where the SMPL is

    if g_args.type == 'SMPL':
        vnum = smplWrapper.size[0]
    else:
        vnum = adamWrapper.size[0]

    body_num = v.shape[0] / vnum

    face_num = cinds.shape[0]
    if g_args.type == 'SMPL':
        uvi_color = np.tile(dp_colors, (body_num, 1))
    else:
        uvi_color = np.tile(dp_colors_adam, (body_num, 1))

    #uvi_color = np.hstack((uvi_color,np.ones((v.shape[0],1))))

    mask_color = np.ones(uvi_color.shape, uvi_color.dtype)
    for bid in range(body_num):
        mask_color[bid * vnum:(bid + 1) * vnum, :] = 1.0 * (bid + 1) / body_num

    cvts = v.flatten()
    cvns = vns.flatten()
    cinds = cinds.flatten()

    uvi_color = uvi_color.flatten()
    mask_color = mask_color.flatten()

    glBindBuffer(GL_ARRAY_BUFFER, vn_buffers)
    glBufferData(GL_ARRAY_BUFFER,
                 len(cvns) * sizeof(ctypes.c_float),
                 (ctypes.c_float * len(cvns))(*cvns), GL_STATIC_DRAW)

    glBindBuffer(GL_ARRAY_BUFFER, vts_buffers)
    glBufferData(GL_ARRAY_BUFFER,
                 len(cvts) * sizeof(ctypes.c_float),
                 (ctypes.c_float * len(cvts))(*cvts), GL_STATIC_DRAW)
    cinds = cinds.astype(np.int)
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, inds_buffers)
    glBufferData(GL_ELEMENT_ARRAY_BUFFER,
                 sizeof(ctypes.c_uint) * len(cinds),
                 (ctypes.c_uint * len(cinds))(*cinds), GL_STATIC_DRAW)

    glBindBuffer(GL_ARRAY_BUFFER, uvi_buffers)
    glBufferData(GL_ARRAY_BUFFER,
                 len(uvi_color) * sizeof(ctypes.c_float),
                 (ctypes.c_float * len(uvi_color))(*uvi_color), GL_STATIC_DRAW)

    glBindBuffer(GL_ARRAY_BUFFER, mask_buffers)
    glBufferData(GL_ARRAY_BUFFER,
                 len(mask_color) * sizeof(ctypes.c_float),
                 (ctypes.c_float * len(mask_color))(*mask_color),
                 GL_STATIC_DRAW)