コード例 #1
0
def test_band_dimension_set_labels():

    bdim = BandDimension(name="bs", bands=[Band('some_name',None,None)])
    metadata = CollectionMetadata({},dimensions=[bdim])
    newdim = metadata.rename_labels("bs",target=['1','2','3']).band_dimension

    assert metadata.band_dimension.band_names == ['some_name']
    assert newdim.band_names == ['1','2','3']
コード例 #2
0
def test_band_dimension_rename_labels():
    b02 = Band("B02", "blue", 0.490)
    b03 = Band("B03", "green", 0.560)
    b04 = Band("B04", "red", 0.665)
    bdim = BandDimension(name="bs", bands=[b02, b03, b04])
    metadata = CollectionMetadata({},dimensions=[bdim])
    newdim = metadata.rename_labels("bs",target=['1','2','3']).band_dimension

    assert metadata.band_dimension.band_names == ['B02','B03','B04']
    assert newdim.band_names == ['1','2','3']
コード例 #3
0
    def load_collection(self, collection_id: str, load_params: LoadParameters,
                        env: EvalEnv) -> DummyDataCube:
        _register_load_collection_call(collection_id, load_params)
        if collection_id in _collections:
            return _collections[collection_id]

        metadata = CollectionMetadata(
            metadata=self.get_collection_metadata(collection_id))
        if load_params.bands:
            metadata = metadata.filter_bands(load_params.bands)
        image_collection = DummyDataCube(metadata=metadata)

        _collections[collection_id] = image_collection
        return image_collection
コード例 #4
0
def test_get_dimensions_cube_dimensions_eo_bands():
    dims = CollectionMetadata._parse_dimensions({
        "cube:dimensions": {
            "x": {"type": "spatial", "extent": [-10, 10]},
            "y": {"type": "spatial", "extent": [-56, 83], "reference_system": 123},
            "t": {"type": "temporal", "extent": ["2020-02-20", None]},
            "spectral": {"type": "bands", "values": ["r", "g", "b"]},
        },
        "summaries": {
            "eo:bands": [
                {"name": "r", "common_name": "red", "center_wavelength": 5},
                {"name": "g", "center_wavelength": 8},
                {"name": "b", "common_name": "blue"},
            ]
        }
    })
    assert_same_dimensions(dims, [
        SpatialDimension(name="x", extent=[-10, 10]),
        SpatialDimension(name="y", extent=[-56, 83], crs=123),
        TemporalDimension(name="t", extent=["2020-02-20", None]),
        BandDimension(name="spectral", bands=[
            Band("r", "red", 5),
            Band("g", None, 8),
            Band("b", "blue", None),
        ])
    ])
コード例 #5
0
    def load_collection(self,
                        collection_id: str,
                        arguments: dict,
                        metadata: dict = None) -> 'DryRunDataCube':
        """Create a DryRunDataCube from a `load_collection` process."""
        # TODO: avoid VITO/Terrascope specific handling here?
        properties = {
            **CollectionMetadata(metadata).get("_vito",
                                               "properties",
                                               default={}),
            **arguments.get("properties", {})
        }

        trace = DataSource.load_collection(collection_id=collection_id,
                                           properties=properties)
        self.add_trace(trace)

        cube = DryRunDataCube(traces=[trace],
                              data_tracer=self,
                              metadata=metadata)
        if "temporal_extent" in arguments:
            cube = cube.filter_temporal(*arguments["temporal_extent"])
        if "spatial_extent" in arguments:
            cube = cube.filter_bbox(**arguments["spatial_extent"])
        if "bands" in arguments:
            cube = cube.filter_bands(arguments["bands"])

        if properties:
            cube = cube.filter_properties(properties)

        return cube
コード例 #6
0
 def __init__(self,
              node_id: str,
              builder: GraphBuilder,
              session: 'Connection',
              metadata: CollectionMetadata = None):
     self.node_id = node_id
     self.builder = builder
     self.session = session
     self.graph = builder.processes
     self.metadata = CollectionMetadata.get_or_create(metadata)
コード例 #7
0
def test_get_dimensions_cube_dimensions_no_band_names():
    logs = []
    dims = CollectionMetadata._parse_dimensions({
        "cube:dimensions": {
            "spectral": {"type": "bands"},
        },
    }, complain=logs.append)
    assert_same_dimensions(dims, [
        BandDimension(name="spectral", bands=[])
    ])
    assert logs == ["No band names in dimension 'spectral'"]
コード例 #8
0
def test_get_dimensions_cube_dimensions_non_standard_type():
    logs = []
    dims = CollectionMetadata._parse_dimensions({
        "cube:dimensions": {
            "bar": {"type": "foo"},
        },
    }, complain=logs.append)
    assert_same_dimensions(dims, [
        Dimension(type="foo", name="bar")
    ])
    assert logs == ["Unknown dimension type 'foo'"]
コード例 #9
0
def test_get_dimensions_cube_dimensions_spatial_xyt():
    dims = CollectionMetadata._parse_dimensions({
        "cube:dimensions": {
            "xx": {"type": "spatial", "extent": [-10, 10]},
            "yy": {"type": "spatial", "extent": [-56, 83], "reference_system": 123},
            "tt": {"type": "temporal", "extent": ["2020-02-20", None]},
        }
    })
    assert_same_dimensions(dims, [
        SpatialDimension(name="xx", extent=[-10, 10]),
        SpatialDimension(name="yy", extent=[-56, 83], crs=123),
        TemporalDimension(name="tt", extent=["2020-02-20", None]),
    ])
コード例 #10
0
def test_aggregate_polygon_result_basic(tmp_path):
    timeseries = {
        "2019-11-11T01:11:11Z": [[7, 8, 9], [10, 11, 12]],
        "2019-10-15T08:15:45Z": [[1, 2, 3], [4, 5, 6]],
    }
    regions = GeometryCollection(
        [Polygon([(0, 0), (5, 1), (1, 4)]),
         Polygon([(6, 1), (1, 7), (9, 9)])])

    metadata = CollectionMetadata({
        "cube:dimensions": {
            "x": {
                "type": "spatial"
            },
            "b": {
                "type": "bands",
                "values": ["red", "green", "blue"]
            }
        }
    })

    result = AggregatePolygonResult(timeseries,
                                    regions=regions,
                                    metadata=metadata)
    result.set_format("netcdf")

    assets = result.write_assets(tmp_path)
    theAsset = assets.popitem()[1]
    filename = theAsset['href']

    assert 'application/x-netcdf' == theAsset['type']
    assert ["red", "green", "blue"] == [b['name'] for b in theAsset['bands']]

    timeseries_ds = xr.open_dataset(filename)
    print(timeseries_ds)
    assert_array_equal(
        timeseries_ds.band_0.coords['t'].data,
        np.asarray([
            np.datetime64('2019-10-15T08:15:45'),
            np.datetime64('2019-11-11T01:11:11')
        ]))
    timeseries_ds.band_0.sel(feature=1)
    timeseries_ds.band_0.sel(t='2019-10-16')
    print(timeseries_ds)
    assert_array_equal(
        4,
        timeseries_ds.band_0.sel(feature=1).sel(t="2019-10-15T08:15:45Z").data)
コード例 #11
0
def test_metadata_bands_dimension_no_band_dimensions():
    metadata = CollectionMetadata({
        "cube:dimensions": {
            "x": {"type": "spatial", "axis": "x"},
        }
    })
    with pytest.raises(MetadataException, match="No band dimension"):
        metadata.band_dimension
    with pytest.raises(MetadataException, match="No band dimension"):
        metadata.bands
    with pytest.raises(MetadataException, match="No band dimension"):
        metadata.band_common_names
    with pytest.raises(MetadataException, match="No band dimension"):
        metadata.get_band_index("red")
    with pytest.raises(MetadataException, match="No band dimension"):
        metadata.filter_bands(["red"])
コード例 #12
0
 def collection_metadata(self, name) -> CollectionMetadata:
     return CollectionMetadata(metadata=self.describe_collection(name))