def test_apply_spatiotemporal(self): import openeo_udf.functions input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry(), { "bands": [{ "band_id": "2", "name": "blue", "wavelength_nm": 496.6, "res_m": 10, "scale": 0.0001, "offset": 0, "type": "int16", "unit": "1" }] }) import os, openeo_udf dir = os.path.dirname(openeo_udf.functions.__file__) file_name = os.path.join(dir, "datacube_reduce_time_sum.py") with open(file_name, "r") as f: udf_code = f.read() result = imagecollection.apply_tiles_spatiotemporal(udf_code) stitched = result.pyramid.levels[0].to_spatial_layer().stitch() print(stitched) self.assertEqual(2, stitched.cells[0][0][0]) self.assertEqual(6, stitched.cells[0][0][5]) self.assertEqual(4, stitched.cells[0][5][6])
def test_apply_dimension_spatiotemporal(self): input = Pyramid({0: self.tiled_raster_rdd}) imagecollection = GeotrellisTimeSeriesImageCollection( input, InMemoryServiceRegistry(), { "bands": [{ "band_id": "2", "name": "blue", "wavelength_nm": 496.6, "res_m": 10, "scale": 0.0001, "offset": 0, "type": "int16", "unit": "1" }] }) udf_code = """ def rct_savitzky_golay(udf_data:UdfData): from scipy.signal import savgol_filter print(udf_data.get_datacube_list()) return udf_data """ result = imagecollection.apply_tiles_spatiotemporal(udf_code) local_tiles = result.pyramid.levels[0].to_numpy_rdd().collect() print(local_tiles) self.assertEquals(len(TestMultipleDates.layer), len(local_tiles)) ref_dict = { e[0]: e[1] for e in imagecollection.pyramid.levels[0].convert_data_type( CellType.FLOAT64).to_numpy_rdd().collect() } result_dict = {e[0]: e[1] for e in local_tiles} for k, v in ref_dict.items(): tile = result_dict[k] assert_array_almost_equal(np.squeeze(v.cells), np.squeeze(tile.cells), decimal=2)