コード例 #1
0
def compact_land_use(
    mc_obj,
    zone_factor_file,
):
    ''' shifts growth in trips according to zones and factors defined in file
    
    :param mc_obj: the mode choice object containing parameters and inputs
    :param zone_factor_file: file containing zones and growth factor 
    '''
    modified_trips = mc_obj.config.scen_path + r"growth_shift_trip_tables.omx"

    pre_MC_trip_file_2016 = mc_obj.config.data_path + r"..\2016\pre_MC_trip_6_purposes.omx"
    pre_MC_trip_file_future = mc_obj.config.data_path + r".\pre_MC_trip_6_purposes.omx"

    zone_factors = pd.read_csv(mc_obj.config.param_path +
                               zone_factor_file).sort_values('ID')

    all_taz = pd.read_csv(mc_obj.data_paths['taz_file'])
    taz_factors = all_taz[['ID',
                           'TOWN']].merge(zone_factors, on='ID',
                                          how='left').fillna(1)[:md.max_zone]

    # ==DEBUG===========================================================================
    #         margs_2016 = {}
    #         margs_2040_base = {}
    #         margs_2040_new = {}
    #
    #         margs_2016['ID'] = taz_factors['ID']
    #         margs_2016['BOSTON_NB'] = taz_factors['BOSTON_NB']
    #         margs_2040_base['ID'] = taz_factors['ID']
    #         margs_2040_base['BOSTON_NB'] = taz_factors['BOSTON_NB']
    #         margs_2040_new['ID'] = taz_factors['ID']
    #         margs_2040_new['BOSTON_NB'] = taz_factors['BOSTON_NB']
    # =============================================================================

    with omx.open_file(pre_MC_trip_file_2016) as f1, omx.open_file(
            pre_MC_trip_file_future) as f2, omx.open_file(modified_trips,
                                                          'w') as fout:
        for name in f1.list_matrices():

            tt_2016 = np.array(f1[name])[:md.max_zone, :md.max_zone]
            tt_future = np.array(f2[name])[:md.max_zone, :md.max_zone]

            # only apply to home-based productions
            if (name[:3] != 'NHB'):
                diff = np.maximum(tt_future - tt_2016, 0)
                adj_diff = np.multiply(
                    diff.T, (np.array(taz_factors['POP_FACTOR']) - 1)).T
                tt_newfuture = tt_future + adj_diff
            else:
                tt_newfuture = tt_future

# =DEBUG============================================================================
#                 margs_2016[name] = tt_2016.sum(axis = 1)
#                 margs_2040_base[name] = tt_future.sum(axis = 1)
#                 margs_2040_new[name] = tt_newfuture.sum(axis = 1)
# =============================================================================
            fout[name] = tt_newfuture

    mc_obj.pre_MC_trip_table = mtx.store_omx_as_dict(modified_trips)
コード例 #2
0
ファイル: create_sf_example.py プロジェクト: UDST/activitysim
def create_subset(dest_store, dest_skims, maxZone, households_sample_size=0):

    dest_store_path = os.path.join(dest_data_dir, dest_store)
    dest_skims_path = os.path.join(dest_data_dir, dest_skims)

    print('land_use_taz')
    df = pd.read_hdf(source_store, 'land_use_taz')
    df = df[df.index <= maxZone]
    df.to_hdf(dest_store_path, 'land_use_taz')
    del df

    print('households')
    hh_df = pd.read_hdf(source_store, 'households')
    hh_df = hh_df[hh_df.TAZ <= maxZone]
    if households_sample_size:
        hh_df = hh_df.take(np.random.choice(len(hh_df), size=households_sample_size, replace=False))
    hh_df.to_hdf(dest_store_path, 'households')

    print('persons')
    per_df = pd.read_hdf(source_store, 'persons')
    per_df = per_df[per_df.household_id.isin(hh_df.index)]
    per_df.to_hdf(dest_store_path, 'persons')

    # process all skims
    skims = omx.open_file(source_skims)
    skims_out = omx.open_file(dest_skims_path, 'w')

    skimsToProcess = skims.list_matrices()
    for skimName in skimsToProcess:
        print(skimName)
        skims_out[skimName] = skims[skimName][0:maxZone, 0:maxZone]
        skims_out[skimName].attrs.TITLE = ''  # remove funny character for OMX viewer
コード例 #3
0
def crop_omx(omx_file_name, zones, num_outfiles=1):

    skim_data_type = np.float32

    omx_in = omx.open_file(input_path(f"{omx_file_name}.omx"))
    print(f"omx_in shape {omx_in.shape()}")

    offset_map = None
    for mapping_name in omx_in.listMappings():
        _offset_map = np.asanyarray(omx_in.mapentries(mapping_name))
        if offset_map is not None or not (_offset_map == np.arange(
                1,
                len(_offset_map) + 1)).all():
            assert offset_map is None or (offset_map == _offset_map).all()
            offset_map = _offset_map

    if offset_map is not None:

        om = pd.Series(offset_map)
        om = om[om.isin(zones.values)]
        indexes = om.index.values

    else:
        indexes = zones.index.tolist(
        )  # index of TAZ in skim (zero-based, no mapping)
    labels = zones.values  # TAZ zone_ids in omx index order

    # create
    if num_outfiles == 1:
        omx_out = [omx.open_file(output_path(f"{omx_file_name}.omx"), 'w')]
    else:
        omx_out = [
            omx.open_file(output_path(f"{omx_file_name}{i + 1}.omx"), 'w')
            for i in range(num_outfiles)
        ]

    for omx_file in omx_out:
        omx_file.create_mapping('ZONE', labels)

    iskim = 0
    for mat_name in omx_in.list_matrices():
        # make sure we have a vanilla numpy array, not a CArray
        m = np.asanyarray(omx_in[mat_name]).astype(skim_data_type)
        m = m[indexes, :][:, indexes]
        print(f"{mat_name} {m.shape}")

        omx_file = omx_out[iskim % num_outfiles]
        omx_file[mat_name] = m
        iskim += 1

    omx_in.close()
    for omx_file in omx_out:
        omx_file.close()
コード例 #4
0
def slice_skims(source_data_dir, dest_data_dir, file_name, max_zone):

    in_file_path = os.path.join(source_data_dir, file_name)
    out_file_path = os.path.join(dest_data_dir, file_name)

    # process all skims
    skims = omx.open_file(in_file_path)
    skims_out = omx.open_file(out_file_path, 'w')

    skimsToProcess = skims.listMatrices()
    for skimName in skimsToProcess:
        print "slice_skims %s: %s" % (file_name, skimName)
        skims_out[skimName] = skims[skimName][0:max_zone, 0:max_zone]
        skims_out[skimName].attrs.TITLE = ''  # remove funny character for OMX viewer
コード例 #5
0
def test_highway():
    from tm2py.controller import RunController
    from tm2py.examples import get_example
    import openmatrix as _omx

    union_city_root = os.path.join(os.getcwd(), _EXAMPLES_DIR, "UnionCity")
    get_example(example_name="UnionCity",
                example_subdir=_EXAMPLES_DIR,
                root_dir=os.getcwd())
    controller = RunController([
        os.path.join(_EXAMPLES_DIR, r"scenario_config.toml"),
        os.path.join(_EXAMPLES_DIR, r"model_config.toml"),
    ],
                               run_dir=union_city_root)
    controller.run()

    root = os.path.join(controller.run_dir, r"skim_matrices\highway")
    ref_root = os.path.join(controller.run_dir, r"ref_skim_matrices\highway")
    open_files = []
    file_names = [name for name in os.listdir(root) if name.endswith(".omx")]
    different_skims = []
    try:
        for name in file_names:
            skims = _omx.open_file(os.path.join(root, name))
            open_files.append(skims)
            ref_skims = _omx.open_file(os.path.join(ref_root, name))
            open_files.append(ref_skims)
            for key in skims.list_matrices():
                data = skims[key].read()
                ref_data = ref_skims[key].read()
                if not (data == ref_data).all():
                    different_skims.append(key)
    finally:
        for f in open_files:
            f.close()
    assert (
        len(different_skims) == 0
    ), f"there are {len(different_skims)} different skims: {','.join(different_skims)}"

    count_different_lines = 0
    with open(os.path.join(root, "HWYSKIM_MAZMAZ_DA.csv")) as data:
        with open(os.path.join(ref_root, "HWYSKIM_MAZMAZ_DA.csv")) as ref_data:
            for line in data:
                ref_line = next(ref_data)
                if ref_line != line:
                    count_different_lines += 1
    assert (
        count_different_lines == 0
    ), f"HWYSKIM_MAZMAZ_DA.csv differs on {count_different_lines} lines"
コード例 #6
0
def test_contains():
    with omx.open_file(TEST_FILE, 'w') as f:
        add_m1_node(f)
        nt.assert_in('m1', f)
        # keep this here to be sure we're actually running
        # File.__contains__
        assert 'm1' in f
コード例 #7
0
def test_set_get_del():
    with omx.open_file(TEST_FILE, 'w') as f:
        add_m1_node(f)
        npt.assert_array_equal(f['m1'], ones5x5())
        nt.assert_equal(f.shape(), (5, 5))
        del f['m1']
        nt.assert_not_in('m1', f)
コード例 #8
0
def vmt_by_neighborhood(mc_obj, out_fn=None):
    '''
    Summarizes Truck VMT production and attraction by the 26 Boston neighborhoods.
    :param mc_obj: mode choice module object as defined in the IPython notebook
    :param out_fn: output csv filename; if None specified, in the output path defined in config.py  
    :param by: grouping used for the summary; if None specified, only aggregate production and attraction will be provided.
    '''
    trk_trip = omx.open_file(
        mc_obj.config.data_path + mc_obj.data_paths['truck_trip_table'], 'r')

    if out_fn is None:
        out_fn = mc_obj.config.out_path + f'trk_vmt_by_neighborhood.csv'

    vmt_master_table = pd.DataFrame(
        columns=['Production', 'Attraction', 'truck'])
    for truck in md.truck_categories:
        if trk_trip[truck]:
            trk_trip_table = np.array(trk_trip[truck])[0:md.max_zone,
                                                       0:md.max_zone]
            vmt_table = __mt_prod_attr_nhood(mc_obj, trk_trip_table,
                                             mc_obj.drive_skim_PK)
            vmt_table['truck'] = truck
            vmt_master_table = vmt_master_table.append(vmt_table, sort=True)
    vmt_summary = pd.concat([
        vmt_master_table.groupby(['truck', 'BOSTON_NB']).sum().loc[truck]
        for truck in md.truck_categories
    ],
                            axis=1,
                            keys=md.truck_categories)
    vmt_summary.to_csv(out_fn)
    trk_trip.close()
コード例 #9
0
    def load(self, file_path: str):
        """
                Loads matrix from disk. All cores and indices are load. First index is default

                Parameters
                ----------
                file_path: Path to AEM file on disk
                ------------------------------------------------------------
                Example

                >>> zones_in_the_model = 3317
                >>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk trips']

                >>> mat = AequilibraeMatrix()
                >>> mat.create_empty(file_name='my/path/to/file', zones=zones_in_the_model, matrix_names= names_list)
                >>> mat.close()

                >>> mat2 = AequilibraeMatrix()
                >>> mat2.load('my/path/to/file')
                >>> mat2.zones
                3317
                """

        self.file_path = file_path

        if os.path.splitext(file_path)[-1].upper() == ".OMX":
            self.omx = True
            self.omx_file = omx.open_file(file_path, "r")
            self.__load_omx__()
        else:
            self.__load_aem__()
コード例 #10
0
ファイル: omx.py プロジェクト: bccheung/balsa
    def to_omx(file: str, matrices: Dict[str, MATRIX_TYPES], zone_index: pd.Index = None, title: str = '',
               descriptions: Dict[str, str] = None, attrs: Dict[str, dict] = None, mapping: str = 'zone_numbers'):
        """Creates a new (or overwrites an old) OMX file with a collection of matrices.

        Args:
            file: OMX to write.
            matrices: Collection of matrices to write. MUST be a dict, to permit the encoding of matrix metadata,
                and must contain the same types: all Numpy arrays, all Series, or all DataFrames. Checking is done to
                ensure that all items have the same shape and labels.
            zone_index: Override zone labels to use. Generally only useful if writing a dict of raw Numpy arrays.
            title: The title saved in the OMX file.
            descriptions: A dict of descriptions (one for each given matrix), or None to not use.
            attrs: A dict of dicts (one for each given matrix), or None to not use
            mapping: Name of the mapping internal to the OMX file
        """

        matrices, zone_index = _prep_matrix_dict(matrices, zone_index)

        if descriptions is None:
            descriptions = {name: '' for name in matrices.keys()}
        if attrs is None:
            attrs = {name: None for name in matrices.keys()}

        file = str(file)  # Converts from Path
        with omx.open_file(file, mode='w', title=title) as omx_file:
            omx_file.create_mapping(mapping, zone_index.tolist())

            for name, array in matrices.items():
                description = descriptions[name]
                attr = attrs[name]

                omx_file.create_matrix(name, obj=np.ascontiguousarray(array), title=description, attrs=attr)

        return
コード例 #11
0
    def load(self, file_path: str):
        """
        Loads matrix from disk. All cores and indices are load. First index is default

        Args:
            file_path (:obj:`str`): Path to AEM or OMX file on disk

        ::

            zones_in_the_model = 3317
            names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk trips']

            mat = AequilibraeMatrix()
            mat.create_empty(file_name='my/path/to/file', zones=zones_in_the_model, matrix_names= names_list)
            mat.close()

            mat2 = AequilibraeMatrix()
            mat2.load('my/path/to/file.omx')
            mat2.zones
          3317
        """

        self.file_path = file_path

        if os.path.splitext(file_path)[-1].upper() == ".OMX":
            self.__omx = True
            self.omx_file = omx.open_file(file_path, "a")
            self.__load_omx__()
        else:
            self.__load_aem__()
コード例 #12
0
ファイル: skims.py プロジェクト: stevenhz/activitysim
def load_skims(omx_file_path, skim_info, skim_buffers):

    skim_data = skim_data_from_buffers(skim_buffers, skim_info)

    block_offsets = skim_info['block_offsets']
    omx_keys = skim_info['omx_keys']

    # read skims into skim_data
    with omx.open_file(omx_file_path) as omx_file:
        for skim_key, omx_key in iteritems(omx_keys):

            omx_data = omx_file[omx_key]
            assert np.issubdtype(omx_data.dtype, np.floating)

            block, offset = block_offsets[skim_key]
            block_data = skim_data[block]

            logger.debug(
                "load_skims load omx_key %s skim_key %s to block %s offset %s"
                % (omx_key, skim_key, block, offset))

            # this will trigger omx readslice to read and copy data to skim_data's buffer
            a = block_data[:, :, offset]
            a[:] = omx_data[:]

    logger.info("load_skims loaded skims from %s" % (omx_file_path, ))
コード例 #13
0
ファイル: skims.py プロジェクト: UDST/activitysim
def load_skims(omx_file_path, skim_info, skim_buffers):

    skim_data = skim_data_from_buffers(skim_buffers, skim_info)

    block_offsets = skim_info['block_offsets']
    omx_keys = skim_info['omx_keys']

    # read skims into skim_data
    with omx.open_file(omx_file_path) as omx_file:
        for skim_key, omx_key in iteritems(omx_keys):

            omx_data = omx_file[omx_key]
            assert np.issubdtype(omx_data.dtype, np.floating)

            block, offset = block_offsets[skim_key]
            block_data = skim_data[block]

            logger.debug("load_skims load omx_key %s skim_key %s to block %s offset %s" %
                         (omx_key, skim_key, block, offset))

            # this will trigger omx readslice to read and copy data to skim_data's buffer
            a = block_data[:, :, offset]
            a[:] = omx_data[:]

    logger.info("load_skims loaded skims from %s" % (omx_file_path, ))
コード例 #14
0
ファイル: aggregate_od.py プロジェクト: figo2002/bca4abm
    def __init__(self,
                 omx_file_path,
                 name,
                 zone_index,
                 transpose=False,
                 cache_skims=True):

        self.skims = {}

        self.name = name
        self.transpose = transpose  # never used by any caller?

        self.omx = omx.open_file(omx_file_path, 'r')
        self.omx_shape = tuple([int(s) for s in self.omx.shape()])

        # skims must be same shape as zone file
        # (or we will need to be smarter about discontinuous zone ids)
        self.length = zone_index.shape[0]
        assert self.omx_shape[0] == self.length
        assert self.omx_shape[1] == self.length

        self.skim_dtype = np.float64

        self.cache_skims = cache_skims

        self.usage = {key: 0 for key in self.omx.listMatrices()}

        logger.debug("omx file %s skim shape: %s number of skims: %s" %
                     (name, self.omx_shape, len(self.usage)))
コード例 #15
0
def test_open_readonly_hdf5_file():
    with tables.open_file(TEST_FILE, 'w'):
        pass

    assert os.path.isfile(TEST_FILE)

    with omx.open_file(TEST_FILE, 'r'):
        pass
コード例 #16
0
def omx_file(data_dir, asim_settings):
    print("opening omx file")

    fname = os.path.join(data_dir, asim_settings["skims_file"])
    file = omx.open_file(fname)
    asim_utils.close_on_exit(file, fname)

    return file
コード例 #17
0
def land_use_growth_shift(config, factor=0.5):
    '''apply land use growth shifts to tazs defined in Densified_TAZs.csv 
    
    :param config: the scenario object defined in the config.py - path to output trip table and zone files
    :param factor: share of growth to be reallocated
    '''
    modified_2040 = config.scen_path + r"growth_shift_trip_tables.omx"

    pre_MC_trip_file_2016 = config.data_path + r"..\2016\pre_MC_trip_6_purposes.omx"
    pre_MC_trip_file_2040 = config.data_path + r"..\2040\pre_MC_trip_6_purposes.omx"

    dense_taz = pd.read_csv(config.scen_path +
                            r"Densified_TAZs.csv").sort_values('ID_FOR_CS')[[
                                'ID_FOR_CS'
                            ]]
    dense_taz['dense'] = 1
    all_taz = pd.read_csv(config.taz_file)
    dense_taz_list = all_taz[['ID_FOR_CS']].merge(
        dense_taz, on='ID_FOR_CS',
        how='left').fillna(0).astype(bool)[:md.max_zone]

    with omx.open_file(pre_MC_trip_file_2016) as f1, omx.open_file(
            pre_MC_trip_file_2040) as f2, omx.open_file(modified_2040,
                                                        'w') as fout:
        for name in f1.list_matrices():
            tt_2016 = np.array(f1[name])[:md.max_zone, :md.max_zone]
            tt_2040 = np.array(f2[name])[:md.max_zone, :md.max_zone]
            diff = tt_2040 - tt_2016
            prod_sum_2016 = tt_2016.sum(axis=1)
            prod_sum_2040 = tt_2040.sum(axis=1)
            prod_sum_diff = diff.sum(axis=1)
            sum_to_transfer = prod_sum_diff[~dense_taz_list['dense'].
                                            values].sum() * factor
            prod_sum_diff[~dense_taz_list['dense'].values] = prod_sum_diff[
                ~dense_taz_list['dense'].values] * (1 - factor)
            prod_sum_diff[dense_taz_list['dense'].values] = (
                prod_sum_diff[dense_taz_list['dense'].values] +
                sum_to_transfer * prod_sum_2040[dense_taz_list['dense'].values]
                / prod_sum_2040[dense_taz_list['dense'].values].sum())
            # distribute prod_sum to each attraction zone
            tt_new = pd.DataFrame(tt_2040).divide(
                pd.Series(prod_sum_2040),
                axis=0).fillna(0).multiply(prod_sum_2016 + prod_sum_diff,
                                           axis=0).values
            fout[name] = tt_new
コード例 #18
0
ファイル: omx.py プロジェクト: bccheung/balsa
    def read_omx(file: str, matrices: Iterable[str] = None, mapping: str = None, raw: bool = False,
                 tall: bool = False, squeeze: bool = True) -> Union[MATRIX_TYPES, Dict[str, MATRIX_TYPES]]:
        """
        Reads Open Matrix (OMX) files. An OMX file can contain multiple matrices, so this function
        typically returns a Dict.

        Args:
            file: OMX file from which to read. Cannot be an open file handler.
            matrices: List of matrices to read from the file. If None, all matrices will be read.
            mapping: The zone number mapping to use, if known in advance. If None, and the OMX file only contains
                one mapping, then that one is used. No mapping is read if raw is False.
            raw: If True, matrices will be returned as raw Numpy arrays. Otherwise, Pandas objects are returned
            tall: If True, matrices will be returned in 1D format (pd.Series if raw is False). Otherwise, a 2D object
                is returned.
            squeeze: If True, and the file contains exactly one matrix, return that matrix instead of a Dict.

        Returns:
            The matrix, or matrices contained in the OMX file.

        """
        file = str(file)
        with omx.open_file(file, mode='r') as omx_file:
            if mapping is None and not raw:
                all_mappings = omx_file.list_mappings()
                assert len(all_mappings) == 1
                mapping = all_mappings[0]

            if matrices is None:
                matrices = sorted(omx_file.list_matrices())
            else:
                matrices = sorted(matrices)

            if not raw:
                labels = pd.Index(omx_file.mapping(mapping).keys())
                if tall:
                    labels = pd.MultiIndex.from_product([labels, labels], names=['o', 'd'])

            return_value = {}
            for matrix_name in matrices:
                wrapper = omx_file[matrix_name]
                matrix = wrapper.read()

                if tall:
                    n = matrix.shape[0] * matrix.shape[1]
                    matrix.shape = n

                if not raw:
                    if tall: matrix = pd.Series(matrix, index=labels)
                    else: matrix = pd.DataFrame(matrix, index=labels, columns=labels)

                    matrix.name = matrix_name

                return_value[matrix_name] = matrix

            if len(matrices) == 1 and squeeze:
                return return_value[matrices[0]]
            return return_value
コード例 #19
0
ファイル: skims.py プロジェクト: stefancoe/activitysim
def omx_file(data_dir, settings):
    logger.debug("opening omx file")

    fname = os.path.join(data_dir, settings["skims_file"])
    file = omx.open_file(fname)

    pipeline.close_on_exit(file, fname)

    return file
コード例 #20
0
def test_get_length_of_file():
    with omx.open_file(TEST_FILE, 'w') as f:
        f['m1'] = np.ones((5, 5))
        f['m2'] = np.ones((5, 5))
        f['m3'] = np.ones((5, 5))
        f['m4'] = np.ones((5, 5))
        f['m5'] = np.ones((5, 5))
        nt.assert_equal(len(f), 5)
        nt.assert_equal(len(f.list_matrices()), 5)
コード例 #21
0
def test_add_numpy_matrix_using_brackets():
    with omx.open_file(TEST_FILE, 'w') as f:
        f['m1'] = ones5x5()
        npt.assert_array_equal(f['m1'], ones5x5())
        nt.assert_equal(f.shape(), (5, 5))

        # test check for shape matching
        with nt.assert_raises(omx.Exceptions.ShapeError):
            f.create_matrix('m2', obj=np.ones((8, 8)))
コード例 #22
0
def regress():

    persons_df = pipeline.get_table('persons')
    persons_df = persons_df[persons_df.household_id == HH_ID]
    print("persons_df\n%s" % persons_df[['value_of_time', 'distance_to_work']])
    """
    persons_df
     person_id  value_of_time  distance_to_work
    person_id
    3249922        23.349532              0.62
    3249923        23.349532              0.62
    """

    tours_df = pipeline.get_table('tours')

    regress_tour_modes(tours_df)

    assert tours_df.shape[0] > 0
    assert not tours_df.tour_mode.isnull().any()

    # optional logsum column was added to all tours except mandatory
    assert 'destination_logsum' in tours_df
    if (tours_df.destination_logsum.isnull() !=
        (tours_df.tour_category == 'mandatory')).any():
        print(tours_df[(tours_df.destination_logsum.isnull() !=
                        (tours_df.tour_category == 'mandatory'))])
    assert (tours_df.destination_logsum.isnull() == (
        tours_df.tour_category == 'mandatory')).all()

    # mode choice logsum calculated for all tours
    assert 'mode_choice_logsum' in tours_df
    assert not tours_df.mode_choice_logsum.isnull().any()

    trips_df = pipeline.get_table('trips')
    assert trips_df.shape[0] > 0
    assert not trips_df.purpose.isnull().any()
    assert not trips_df.depart.isnull().any()
    assert not trips_df.trip_mode.isnull().any()

    # mode_choice_logsum calculated for all trips
    assert not trips_df.mode_choice_logsum.isnull().any()

    # should be at least two tours per trip
    assert trips_df.shape[0] >= 2 * tours_df.shape[0]

    # write_trip_matrices
    trip_matrices_file = config.output_file_path('trips_md.omx')
    assert os.path.exists(trip_matrices_file)
    trip_matrices = omx.open_file(trip_matrices_file)
    assert trip_matrices.shape() == (25, 25)

    assert 'WALK_MD' in trip_matrices.list_matrices()
    walk_trips = np.array(trip_matrices['WALK_MD'])
    assert walk_trips.dtype == np.dtype('float64')

    trip_matrices.close()
コード例 #23
0
ファイル: build_omx.py プロジェクト: byu-transpolab/WFRC_asim
def compile_omx_files(manifest, dest_file_name, source_data_dir):
    with omx.open_file(dest_file_name, 'a') as dest_omx:

        for row in manifest.itertuples(index=True):

            source_file_name = os.path.join(source_data_dir,
                                            row.source_file_name)

            if row.skim_key2:
                dest_key = row.skim_key1 + '__' + row.skim_key2
            else:
                dest_key = row.skim_key1

            print(
                "Reading '%s' from '%s' in %s' % (dest_key, row.source_key, source_file_name)"
            )
            with omx.open_file(source_file_name, 'r') as source_omx:

                if row.source_key not in source_omx.list_matrices():
                    print(
                        "Source matrix with key '%s' not found in file '%s'" %
                        (
                            row.source_key,
                            source_file_name,
                        ))
                    print(source_omx.list_matrices())
                    raise RuntimeError(
                        "Source matrix with key '%s' not found in file '%s'" %
                        (row.source_key, dest_omx))

                data = source_omx[row.source_key]

                if dest_key in dest_omx.list_matrices():
                    print("deleting existing dest key '%s'" % (dest_key, ))
                    dest_omx.removeNode(dest_omx.root.data, dest_key)

                data = np.delete(data,
                                 np.r_[135:140, 420:422, 1781:1788, 2873:2881],
                                 axis=0)
                data = np.delete(data,
                                 np.r_[135:140, 420:422, 1781:1788, 2873:2881],
                                 axis=1)
                dest_omx[dest_key] = data
コード例 #24
0
    def open_skimfile(self):
        self.skimfile_path = tkinter.filedialog.askopenfilename()

        if self.skimfile_path:
            self.skimfile_lbl["text"] = os.path.basename(self.skimfile_path)

            self.skims = omx.open_file(self.skimfile_path, "r")
            mtxs = self.skims.list_matrices()
            self.skim_selector.set_menu(mtxs[0], *mtxs)
            self.redraw_map()
コード例 #25
0
def test_skim_writing(skim, tmp_path):
    tmp_dir = tmp_path / str(uuid.uuid4())
    os.mkdir(tmp_dir)

    skim.write_to_file(file_root=tmp_dir, attributes=test_additional_attribs)
    with omx.open_file(tmp_dir / "skimmy.omx", 'r') as f:
        assert np.alltrue(np.array(f) == test_matrix)
        assert f[test_name].attrs.num_zones == test_matrix.shape[0]
        assert f[test_name].attrs.name == test_name
        assert f[test_name].attrs.index_to_zone_ids == index_to_zone_ids
        assert f[test_name].attrs.foo == "bar"
コード例 #26
0
ファイル: aggregate_trips.py プロジェクト: figo2002/bca4abm
def get_omx_matrix(matrix_dir, omx_file_name, omx_key, close_after_read=True):
    if not omx_file_name:
        return 0.0
    # print "reading %s / %s '%s'" % (matrix_dir, omx_file_name, omx_key)
    omx_file_name = os.path.join(matrix_dir, omx_file_name)
    omx_file = omx.open_file(omx_file_name, 'r')
    matrix = omx_file[omx_key][:, :]
    if close_after_read:
        # print "closing %s / %s '%s'" % (matrix_dir, omx_file_name, omx_key)
        omx_file.close()
    return matrix
コード例 #27
0
def test_len_list_iter():
    names = ['m{}'.format(x) for x in range(5)]
    with omx.open_file(TEST_FILE, 'w') as f:
        for m in names:
            f[m] = ones5x5()

        for mat in f:
            npt.assert_array_equal(mat, ones5x5())

        nt.assert_equal(len(f), len(names))
        nt.assert_equal(f.list_matrices(), names)
コード例 #28
0
    def test_export_to_omx(self):
        self.new_matrix.export(self.omx_export_name)

        omxfile = omx.open_file(self.omx_export_name, "r")

        # Check if matrices values are compatible
        for m in self.new_matrix.names:
            sm = np.nansum(self.new_matrix.matrix[m])
            sm2 = np.nansum(np.array(omxfile[m]))

            self.assertEqual(sm, sm2, "Matrix {} was exported with the wrong value".format(m))
        del omxfile
コード例 #29
0
ファイル: cvt_freight_skims.py プロジェクト: figo2002/bca4abm
def cvt_to_omx(txt_file_name, omx_file_name, omx_key):

    data = np.loadtxt(txt_file_name, dtype=np.float, delimiter=',')

    print "---"
    print "cvt_to_omx from", txt_file_name
    print "cvt_to_omx   to %s / %s" % (omx_file_name, omx_key)
    # print m

    omx_file = omx.open_file(omx_file_name, 'a')
    omx_setMatrix(omx_file, omx_key, data)
    omx_file.close()
コード例 #30
0
def write_matrices(aggregate_trips, zone_index, orig_index, dest_index,
                   model_settings):
    """
    Write aggregated trips to OMX format.

    The MATRICES setting lists the new OMX files to write.
    Each file can contain any number of 'tables', each specified by a
    table key ('name') and a trips table column ('data_field') to use
    for aggregated counts.

    Any data type may be used for columns added in the annotation phase,
    but the table 'data_field's must be summable types: ints, floats, bools.
    """

    matrix_settings = model_settings.get('MATRICES')

    if not matrix_settings:
        logger.error('Missing MATRICES setting in write_trip_matrices.yaml')

    for matrix in matrix_settings:
        filename = matrix.get('file_name')
        filepath = config.output_file_path(filename)
        logger.info('opening %s' % filepath)
        file = omx.open_file(filepath, 'w')  # possibly overwrite existing file
        table_settings = matrix.get('tables')

        for table in table_settings:
            table_name = table.get('name')
            col = table.get('data_field')

            if col not in aggregate_trips:
                logger.error(
                    f'missing {col} column in aggregate_trips DataFrame')
                return

            hh_weight_col = model_settings.get('HH_EXPANSION_WEIGHT_COL')
            if hh_weight_col:
                aggregate_trips[col] = aggregate_trips[col] / aggregate_trips[
                    hh_weight_col]

            data = np.zeros((len(zone_index), len(zone_index)))
            data[orig_index, dest_index] = aggregate_trips[col]
            logger.info('writing %s' % table_name)
            file[table_name] = data  # write to file

        # include the index-to-zone map in the file
        logger.info('adding %s mapping for %s zones to %s' %
                    (zone_index.name, zone_index.size, filename))
        file.create_mapping(zone_index.name, zone_index.to_numpy())

        logger.info('closing %s' % filepath)
        file.close()
コード例 #31
0
def inter_extrap_trucktriptable(config, year=2030):
    '''interpolate or extrapolate truck trip tables
    
    :param config: the scenario object defined in the config.py - path to output trip table
    :param year: year of interpolated or extrapolated trip table
    '''
    new_table = config.data_path + r"..\\" + str(year) + "\\truck_trips.omx"
    pre_MC_trip_file_2016 = config.data_path + r"..\2016\\truck_trips.omx"
    pre_MC_trip_file_2040 = config.data_path + r"..\2040\\truck_trips.omx"

    with omx.open_file(pre_MC_trip_file_2016) as f1, omx.open_file(
            pre_MC_trip_file_2040) as f2, omx.open_file(new_table,
                                                        'w') as fout:
        for name in f1.list_matrices():
            tt_2016 = np.array(f1[name])[:md.max_zone, :md.max_zone]
            tt_2040 = np.array(f2[name])[:md.max_zone, :md.max_zone]
            diff = tt_2040 - tt_2016
            yearly_diff = diff / 24  # annual growth of trips
            growth_years = year - 2016
            tt_new = tt_2016 + (yearly_diff * growth_years)
            tt_new = tt_new.clip(min=0)  # don't let trips go negative
            fout[name] = tt_new
コード例 #32
0
def tap_skim_dict(data_dir, settings):

    logger.info("loading tap_skim_dict")

    cache_skim_key_values = settings['skim_time_periods']['labels']
    skim_dict = askim.SkimDict()

    for skims_file in settings["tap_skims_files"]:
        skims_file_path = config.data_file_path(skims_file)
        with omx.open_file(skims_file_path) as omx_file:
            add_to_skim_dict(skim_dict, omx_file, cache_skim_key_values)

    return skim_dict
コード例 #33
0
ファイル: build_omx.py プロジェクト: UDST/activitysim
def omx_getMatrix(omx_file_name, omx_key):

    with omx.open_file(omx_file_name, 'r') as omx_file:

        if omx_key not in omx_file.list_matrices():
            print "Source matrix with key '%s' not found in file '%s" % (omx_key, omx_file,)
            print omx_file.list_matrices()
            raise RuntimeError("Source matrix with key '%s' not found in file '%s"
                               % (omx_key, omx_file,))

        data = omx_file[omx_key]

    return data
コード例 #34
0
ファイル: skims.py プロジェクト: UDST/activitysim
def get_skim_info(omx_file_path, tags_to_load=None):

    # this is sys.maxint for p2.7 but no limit for p3
    # windows sys.maxint =  2147483647
    MAX_BLOCK_BYTES = sys.maxint - 1 if sys.version_info < (3,) else sys.maxsize - 1

    # Note: we load all skims except those with key2 not in tags_to_load
    # Note: we require all skims to be of same dtype so they can share buffer - is that ok?
    # fixme is it ok to require skims be all the same type? if so, is this the right choice?
    skim_dtype = np.float32
    omx_name = os.path.splitext(os.path.basename(omx_file_path))[0]

    with omx.open_file(omx_file_path) as omx_file:
        # omx_shape = tuple(map(int, tuple(omx_file.shape())))  # sometimes omx shape are floats!

        # fixme call to omx_file.shape() failing in windows p3.5
        omx_shape = omx_file.shape()
        omx_shape = (int(omx_shape[0]), int(omx_shape[1]))  # sometimes omx shape are floats!

        omx_skim_names = omx_file.listMatrices()

    # - omx_keys dict maps skim key to omx_key
    # DISTWALK: DISTWALK
    # ('DRV_COM_WLK_BOARDS', 'AM'): DRV_COM_WLK_BOARDS__AM, ...
    omx_keys = OrderedDict()
    for skim_name in omx_skim_names:
        key1, sep, key2 = skim_name.partition('__')

        # - ignore composite tags not in tags_to_load
        if tags_to_load and sep and key2 not in tags_to_load:
            continue

        skim_key = (key1, key2) if sep else key1
        omx_keys[skim_key] = skim_name

    num_skims = len(omx_keys)
    skim_data_shape = omx_shape + (num_skims, )

    # - key1_subkeys dict maps key1 to dict of subkeys with that key1
    # DIST: {'DIST': 0}
    # DRV_COM_WLK_BOARDS: {'MD': 1, 'AM': 0, 'PM': 2}, ...
    key1_subkeys = OrderedDict()
    for skim_key, omx_key in iteritems(omx_keys):
        if isinstance(skim_key, tuple):
            key1, key2 = skim_key
        else:
            key1 = key2 = skim_key
        key2_dict = key1_subkeys.setdefault(key1, {})
        key2_dict[key2] = len(key2_dict)

    # - blocks dict maps block name to blocksize (number of subkey skims in block)
    # skims_0: 198,
    # skims_1: 198, ...
    # - key1_block_offsets dict maps key1 to (block, offset) of first skim with that key1
    # DISTWALK: (0, 2),
    # DRV_COM_WLK_BOARDS: (0, 3), ...

    if MAX_BLOCK_BYTES:
        max_block_items = MAX_BLOCK_BYTES // np.dtype(skim_dtype).itemsize
        max_skims_per_block = max_block_items // np.prod(omx_shape)
    else:
        max_skims_per_block = num_skims

    def block_name(block):
        return "skim_%s_%s" % (omx_name, block)

    key1_block_offsets = OrderedDict()
    blocks = OrderedDict()
    block = offset = 0
    for key1, v in iteritems(key1_subkeys):
        num_subkeys = len(v)
        if offset + num_subkeys > max_skims_per_block:  # next block
            blocks[block_name(block)] = offset
            block += 1
            offset = 0
        key1_block_offsets[key1] = (block, offset)
        offset += num_subkeys
    blocks[block_name(block)] = offset  # last block

    # - block_offsets dict maps skim_key to (block, offset) of omx matrix
    # DIST: (0, 0),
    # ('DRV_COM_WLK_BOARDS', 'AM'): (0, 3),
    # ('DRV_COM_WLK_BOARDS', 'MD') (0, 4), ...
    block_offsets = OrderedDict()
    for skim_key in omx_keys:

        if isinstance(skim_key, tuple):
            key1, key2 = skim_key
        else:
            key1 = key2 = skim_key

        block, key1_offset = key1_block_offsets[key1]

        key2_relative_offset = key1_subkeys.get(key1).get(key2)

        block_offsets[skim_key] = (block, key1_offset + key2_relative_offset)

    logger.debug("get_skim_info from %s" % (omx_file_path, ))
    logger.debug("get_skim_info skim_dtype %s omx_shape %s num_skims %s num_blocks %s" %
                 (skim_dtype, omx_shape, num_skims, len(blocks)))

    skim_info = {
        'omx_name': omx_name,
        'omx_shape': omx_shape,
        'num_skims': num_skims,
        'dtype': skim_dtype,
        'omx_keys': omx_keys,
        'key1_block_offsets': key1_block_offsets,
        'block_offsets': block_offsets,
        'blocks': blocks,
    }

    return skim_info
コード例 #35
0
ファイル: import_data.py プロジェクト: UDST/activitysim
    walkMgraEquivMinutes.rename(
        columns={'i': 'OMAZ', 'j': 'DMAZ', 'percieved': 'walk_perceived',
                 'actual': 'walk_actual', 'gain': 'walk_gain'},
        inplace=True)

    mgra13_based_input2012 = pd.read_csv(folder + "mgra13_based_input2012.csv")
    mgra13_based_input2012.rename(columns={'mgra': 'MAZ', 'taz': 'TAZ'}, inplace=True)

    Accessam = pd.read_csv(folder + "Accessam.csv")
    Taps = pd.read_csv(folder + "Taps.csv")
    Tap_ptype = pd.read_csv(folder + "Tap_ptype.csv")
    Zone_term = pd.read_csv(folder + "Zone_term.csv")
    Zone_park = pd.read_csv(folder + "Zone_park.csv")

    # read taz and tap skim to get zone ids
    with openmatrix.open_file(folder + "impdan_AM.omx") as taz_skim:
        taz_numbers = taz_skim.mapentries("Origin")

    with openmatrix.open_file(folder + "implocl_AMo.omx") as tap_skim:
        tap_numbers = tap_skim.mapentries("Rows")

    # TAZ
    TAZ = pd.DataFrame({"offset": range(len(taz_numbers)), "TAZ": taz_numbers})
    assert len(np.intersect1d(TAZ.TAZ, Zone_term.TAZ)) == len(Zone_term.TAZ)
    TAZ = TAZ.merge(Zone_term, how="left")
    assert len(np.intersect1d(TAZ.index, Zone_park.TAZ)) == len(Zone_park.TAZ)
    TAZ = TAZ.merge(Zone_park, how="left")
    TAZ.set_index("TAZ", drop=True, inplace=True, verify_integrity=True)

    # MAZ
    MAZ = mgra13_based_input2012
コード例 #36
0
ファイル: build_omx.py プロジェクト: UDST/activitysim
            raise RuntimeError("Source matrix with key '%s' not found in file '%s"
                               % (omx_key, omx_file,))

        data = omx_file[omx_key]

    return data


manifest_dir = '.'
source_data_dir = '.'
dest_data_dir = '.'

manifest_file_name = os.path.join(manifest_dir, 'skim_manifest.csv')
dest_file_name = os.path.join(dest_data_dir, 'skims.omx')

with omx.open_file(dest_file_name, 'a') as dest_omx:

    manifest = read_manifest(manifest_file_name)

    for row in manifest.itertuples(index=True):

        source_file_name = os.path.join(source_data_dir, row.source_file_name)

        if row.skim_key2:
            dest_key = row.skim_key1 + '__' + row.skim_key2
        else:
            dest_key = row.skim_key1

        print "Reading '%s' from '%s' in %s" % (dest_key, row.source_key, source_file_name)
        with omx.open_file(source_file_name, 'r') as source_omx:
コード例 #37
0
ファイル: verify_results.py プロジェクト: UDST/activitysim
#############################################################

ptypes = ["", "Full-time worker", "Part-time worker", "University student", "Non-worker",
          "Retired", "Student of driving age", "Student of non-driving age",
          "Child too young for school"]

mode_labels = ["", "DRIVEALONEFREE", "DRIVEALONEPAY", "SHARED2FREE", "SHARED2PAY", "SHARED3FREE",
               "SHARED3PAY", "WALK", "BIKE", "WALK_LOC", "WALK_LRF", "WALK_EXP", "WALK_HVY",
               "WALK_COM", "DRIVE_LOC", "DRIVE_LRF", "DRIVE_EXP", "DRIVE_HVY", "DRIVE_COM"]

#############################################################
# DISTANCE SKIM
#############################################################

# read distance matrix (DIST)
distmat = omx.open_file(distance_matrix_filename)["DIST"][:]

#############################################################
# EXPORT TABLES
#############################################################

# write tables for verification
tazs = pd.read_hdf(pipeline_filename, "land_use/initialize_landuse")
tazs["zone"] = tazs.index
tazs.to_csv(asim_zones_filename, index=False)

access = pd.read_hdf(pipeline_filename, "accessibility/compute_accessibility")
access.to_csv(asim_access_filename, index=False)

hh = pd.read_hdf(pipeline_filename, "households/joint_tour_frequency")
hh["household_id"] = hh.index