コード例 #1
0
ファイル: test_units.py プロジェクト: Mrbarhate/OpenMDAO
    def test_prefix_plus_math(self):
        # From an issue: m**2 converts fine, but cm**2 does not.

        x1 = convert_units(1.0, 'm**2', 'cm**2')
        self.assertEqual(x1, 10000.0)

        # Let's make sure we can dclare some complicated units
        x = PhysicalQuantity('7200nm**3/kPa*dL')

        #from issue 825, make sure you can handle single characters before a /
        x = PhysicalQuantity('1 g/kW')
コード例 #2
0
    def test_prefix_plus_math(self):
        # From an issue: m**2 converts fine, but cm**2 does not.

        x1 = convert_units(1.0, 'm**2', 'cm**2')
        self.assertEqual(x1, 10000.0)

        # Let's make sure we can dclare some complicated units
        x = PhysicalQuantity('7200nm**3/kPa*dL')

        #from issue 825, make sure you can handle single characters before a /
        x = PhysicalQuantity('1 g/kW')
コード例 #3
0
    def _parse_target(target_definition: dict):
        """
        For each parameter in target definition, if the associated value is a dict (with
        "value" and "unit" as keys), transforms it into a value in base units, as
        defined in BASE_UNITS.

        :param target_definition:
        """

        for target_key, target_value in target_definition.items():
            if isinstance(target_value, dict) and "value" in target_value:
                target_definition[target_key] = om.convert_units(
                    target_value["value"], target_value.get("unit"), BASE_UNITS.get(target_key),
                )
コード例 #4
0
    def _parse_values_and_units(cls, definition):
        """
        Browse recursively provided dictionary and if a dictionary that has
        "value" and "unit" as only keys is found, it is transformed into a
        value in base units, as defined in BASE_UNITS.

        Does nothing if definition is not a dict.

        :param definition:
        """

        if isinstance(definition, dict):
            for key, value in definition.items():
                if isinstance(value, dict) and "value" in value.keys():
                    definition[key] = om.convert_units(
                        value["value"], value.get("unit"), BASE_UNITS.get(key),
                    )
                else:
                    cls._parse_values_and_units(value)
        elif isinstance(definition, list):
            for value in definition:
                cls._parse_values_and_units(value)
コード例 #5
0
def eval_ode_on_grid(phase, transcription):
    """
    Evaluate the ODE from the given phase at all nodes of the given transcription.

    Parameters
    ----------
    phase : Phase
        A Phase object which has been executed and whose ODE is to be run at all nodes
        of the given transcription.
    transcription : Radau or GaussLobatto transcription instance
        The transcription object at which to execute the ODE of the given phase at all nodes.

    Returns
    -------
    dict of (str: ndarray)
        A dictionary of the state values from the phase interpolated to the new transcription.
    dict of (str: ndarray)
        A dictionary of the control values from the phase interpolated to the new transcription.
    dict of (str: ndarray)
        A dictionary of the polynomial control values from the phase interpolated to the new transcription.
    dict of (str: ndarray)
        A dictionary of the state rates computed in the phase's ODE at the new transcription points.
    """
    x = {}
    u = {}
    u_rate = {}
    u_rate2 = {}
    p = {}
    p_rate = {}
    p_rate2 = {}
    param = {}
    f = {}

    # Build the interpolation matrix which interpolates from all nodes on the old grid to
    # all nodes on the new grid.
    grid_data = transcription.grid_data
    L, _ = interpolation_lagrange_matrix(
        old_grid=phase.options['transcription'].grid_data, new_grid=grid_data)

    # Create a new problem for the grid_refinement
    # For this test, use the same grid as the original problem.
    p_refine = om.Problem(model=om.Group())
    grid_refinement_system = GridRefinementODESystem(
        grid_data=grid_data,
        time=phase.time_options,
        states=phase.state_options,
        controls=phase.control_options,
        polynomial_controls=phase.polynomial_control_options,
        parameters=phase.parameter_options,
        ode_class=phase.options['ode_class'],
        ode_init_kwargs=phase.options['ode_init_kwargs'])
    p_refine.model.add_subsystem('grid_refinement_system',
                                 grid_refinement_system,
                                 promotes=['*'])
    p_refine.setup()

    # Set the values in the refinement problem using the outputs from the first
    ode = p_refine.model.grid_refinement_system.ode

    t_prev = phase.get_val('timeseries.time',
                           units=phase.time_options['units'])
    t_phase_prev = phase.get_val('timeseries.time_phase',
                                 units=phase.time_options['units'])
    t_initial = np.repeat(t_prev[0, 0],
                          repeats=transcription.grid_data.num_nodes,
                          axis=0)
    t_duration = np.repeat(t_prev[-1, 0],
                           repeats=transcription.grid_data.num_nodes,
                           axis=0)
    t = np.dot(L, t_prev)
    t_phase = np.dot(L, t_phase_prev)
    targets = get_targets(ode, 'time', phase.time_options['targets'])
    time_phase_targets = get_targets(ode, 'time_phase',
                                     phase.time_options['time_phase_targets'])
    t_initial_targets = get_targets(ode, 't_initial',
                                    phase.time_options['t_initial_targets'])
    t_duration_targets = get_targets(ode, 't_duration',
                                     phase.time_options['t_duration_targets'])
    if targets:
        p_refine.set_val(f'time', t)
    if time_phase_targets:
        p_refine.set_val(f'time_phase', t_phase)
    if t_initial_targets:
        p_refine.set_val(f't_initial', t_initial)
    if t_duration_targets:
        p_refine.set_val(f't_duration', t_duration)

    for name, options in phase.state_options.items():
        x_prev = phase.get_val(f'timeseries.states:{name}',
                               units=options['units'])
        x[name] = np.dot(L, x_prev)
        targets = get_targets(ode, name, options['targets'])
        if targets:
            p_refine.set_val(f'states:{name}', x[name])

    for name, options in phase.control_options.items():
        targets = get_targets(ode, name, options['targets'])
        rate_targets = get_targets(ode, f'{name}_rate',
                                   options['rate_targets'])
        rate2_targets = get_targets(ode, f'{name}_rate12',
                                    options['rate2_targets'])

        u_prev = phase.get_val(f'timeseries.controls:{name}',
                               units=options['units'])
        u[name] = np.dot(L, u_prev)
        if targets:
            p_refine.set_val(f'controls:{name}', u[name])

        u_rate_prev = phase.get_val(f'timeseries.control_rates:{name}_rate')
        u_rate[name] = np.dot(L, u_rate_prev)
        if rate_targets:
            p_refine.set_val(f'control_rates:{name}_rate', u_rate[name])

        u_rate2_prev = phase.get_val(f'timeseries.control_rates:{name}_rate2')
        u_rate2[name] = np.dot(L, u_rate2_prev)
        if rate2_targets:
            p_refine.set_val(f'control_rates:{name}_rate2', u_rate2[name])

    for name, options in phase.polynomial_control_options.items():
        targets = get_targets(ode, name, options['targets'])
        rate_targets = get_targets(ode, f'{name}_rate',
                                   options['rate_targets'])
        rate2_targets = get_targets(ode, f'{name}_rate2',
                                    options['rate2_targets'])

        p_prev = phase.get_val(f'timeseries.polynomial_controls:{name}',
                               units=options['units'])
        p[name] = np.dot(L, p_prev)
        if targets:
            p_refine.set_val(f'polynomial_controls:{name}', p[name])

        p_rate_prev = phase.get_val(
            f'timeseries.polynomial_control_rates:{name}_rate')
        p_rate[name] = np.dot(L, p_rate_prev)
        if rate_targets:
            p_refine.set_val(f'polynomial_control_rates:{name}_rate',
                             p_rate[name])

        p_rate2_prev = phase.get_val(
            f'timeseries.polynomial_control_rates:{name}_rate2')
        p_rate2[name] = np.dot(L, p_rate2_prev)
        if rate2_targets:
            p_refine.set_val(f'polynomial_control_rates:{name}_rate2',
                             p_rate2[name])

    # Configure the parameters
    for name, options in phase.parameter_options.items():
        targets = get_targets(ode, name, options['targets'])
        # The value of the parameter at one node
        param[name] = phase.get_val(f'timeseries.parameters:{name}',
                                    units=options['units'])[0, ...]
        if targets:
            p_refine.set_val(f'parameters:{name}',
                             param[name],
                             units=options['units'])

    # Execute the model
    p_refine.run_model()

    # Assign the state rates on the new grid to f
    for name, options in phase.state_options.items():
        rate_units = get_rate_units(options['units'],
                                    phase.time_options['units'])
        rate_source = options['rate_source']
        rate_source_class = phase.classify_var(rate_source)
        if rate_source_class in {'time'}:
            src_units = phase.time_options['units']
            f[name] = om.convert_units(t, src_units, rate_units)
        elif rate_source_class in {'time_phase'}:
            src_units = phase.time_options['units']
            f[name] = om.convert_units(t_phase, src_units, rate_units)
        elif rate_source_class in {'state'}:
            src_units = phase.state_options[rate_source]['units']
            f[name] = om.convert_units(x[rate_source], src_units, rate_units)
        elif rate_source_class in {'input_control', 'indep_control'}:
            src_units = phase.control_options[rate_source]['units']
            f[name] = om.convert_units(u[rate_source], src_units, rate_units)
        elif rate_source_class in {'control_rate'}:
            u_name = rate_source[:-5]
            u_units = phase.control_options[u_name]['units']
            src_units = get_rate_units(u_units,
                                       phase.time_options['units'],
                                       deriv=1)
            f[name] = om.convert_units(u_rate[rate_source], src_units,
                                       rate_units)
        elif rate_source_class in {'control_rate2'}:
            u_name = rate_source[:-6]
            u_units = phase.control_options[u_name]['units']
            src_units = get_rate_units(u_units,
                                       phase.time_options['units'],
                                       deriv=2)
            f[name] = om.convert_units(u_rate2[rate_source], src_units,
                                       rate_units)
        elif rate_source_class in {
                'input_polynomial_control', 'indep_polynomial_control'
        }:
            src_units = phase.polynomial_control_options[rate_source]['units']
            f[name] = om.convert_units(p[rate_source], src_units, rate_units)
        elif rate_source_class in {'polynomial_control_rate'}:
            pc_name = rate_source[:-5]
            pc_units = phase.polynomial_control_options[pc_name]['units']
            src_units = get_rate_units(pc_units,
                                       phase.time_options['units'],
                                       deriv=1)
            f[name] = om.convert_units(p_rate[rate_source], src_units,
                                       rate_units)
        elif rate_source_class in {'polynomial_control_rate2'}:
            pc_name = rate_source[:-6]
            pc_units = phase.polynomial_control_options[pc_name]['units']
            src_units = get_rate_units(pc_units,
                                       phase.time_options['units'],
                                       deriv=2)
            f[name] = om.convert_units(p_rate2[rate_source], src_units,
                                       rate_units)
        elif rate_source_class in {'parameter'}:
            src_units = phase.parameter_options[rate_source]['units']
            shape = phase.parameter_options[rate_source]['shape']
            f[name] = om.convert_units(param[rate_source], src_units,
                                       rate_units)
            f[name] = np.broadcast_to(f[name], (grid_data.num_nodes, ) + shape)
        elif rate_source_class in {'ode'}:
            f[name] = p_refine.get_val(f'ode.{rate_source}', units=rate_units)

        if len(f[name].shape) == 1:
            f[name] = np.reshape(f[name], newshape=(f[name].shape[0], 1))

    return x, u, p, f
コード例 #6
0
def print_memory_state(tag):
    memory = om.convert_units(
        tracemalloc.get_traced_memory()[0] -
        tracemalloc.get_tracemalloc_memory(), "byte", "Mibyte")
    print(f"{tag:50}:", f"{memory:.3f}MiB")
    return memory