コード例 #1
0
    def test_specify_solver(self):
        import numpy as np

        from openmdao.api import Problem, Group, IndepVarComp, ExecComp, LinearBlockJac, NonlinearBlockGS
        from openmdao.test_suite.components.sellar import SellarDis1withDerivatives, SellarDis2withDerivatives

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz', IndepVarComp('z', np.array([5.0, 2.0])), promotes=['z'])

        model.add_subsystem('d1', SellarDis1withDerivatives(), promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2', SellarDis2withDerivatives(), promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp', ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                                z=np.array([0.0, 0.0]), x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1', ExecComp('con1 = 3.16 - y1'), promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2', ExecComp('con2 = y2 - 24.0'), promotes=['con2', 'y2'])

        model.nonlinear_solver = NonlinearBlockGS()
        model.linear_solver = LinearBlockJac()

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.61001056, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78448534, .00001)
コード例 #2
0
    def test_globaljac_err(self):
        prob = Problem()
        model = prob.model = Group()
        model.add_subsystem('x_param', IndepVarComp('length', 3.0),
                            promotes=['length'])
        model.add_subsystem('mycomp', TestExplCompSimpleDense(),
                            promotes=['length', 'width', 'area'])

        model.linear_solver = LinearBlockJac()
        prob.set_solver_print(level=0)

        prob.model.jacobian = AssembledJacobian()
        prob.setup(check=False, mode='fwd')

        prob['width'] = 2.0
        prob.run_model()

        of = ['area']
        wrt = ['length']

        with self.assertRaises(RuntimeError) as context:
            prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')

            self.assertEqual(str(context.exception),
                             "A block linear solver 'LN: LNBJ' is being used with"
                             " an AssembledJacobian in system ''")
コード例 #3
0
ファイル: test_upload.py プロジェクト: sebasanper/blue
    def test_record_solver_linear_block_jac(self, m):
        self.setup_endpoints(m)
        self.setup_sellar_model()

        self.prob.model.nonlinear_solver = NewtonSolver()
        # used for analytic derivatives
        self.prob.model.nonlinear_solver.linear_solver = LinearBlockJac()

        self.recorder.options['record_abs_error'] = True
        self.recorder.options['record_rel_error'] = True
        self.recorder.options['record_solver_output'] = True
        self.recorder.options['record_solver_residuals'] = True
        self.prob.model.nonlinear_solver.linear_solver.add_recorder(
            self.recorder)

        self.prob.setup(check=False)
        t0, t1 = run_driver(self.prob)
        upload(self.filename, self._accepted_token)

        solver_iteration = json.loads(self.solver_iterations)
        expected_abs_error = 9.947388408259769e-11
        expected_rel_error = 4.330301334141486e-08

        expected_solver_output = [
            {
                'name': 'px.x',
                'values': [0.0]
            },
            {
                'name': 'pz.z',
                'values': [0.0, 0.0]
            },
            {
                'name': 'd1.y1',
                'values': [4.55485639e-09]
            },
            {
                'name': 'd2.y2',
                'values': [-2.27783334e-08]
            },
            {
                'name': 'obj_cmp.obj',
                'values': [-2.28447051e-07]
            },
            {
                'name': 'con_cmp1.con1',
                'values': [2.28461863e-07]
            },
            {
                'name': 'con_cmp2.con2',
                'values': [-2.27742837e-08]
            },
        ]

        self.assertAlmostEqual(expected_abs_error, solver_iteration['abs_err'])
        self.assertAlmostEqual(expected_rel_error, solver_iteration['rel_err'])

        for o in expected_solver_output:
            self.assert_array_close(o, solver_iteration['solver_output'])
コード例 #4
0
    def test_globaljac_err(self):
        prob = Problem()
        model = prob.model = Group(assembled_jac_type='dense')
        model.add_subsystem('x_param', IndepVarComp('length', 3.0),
                            promotes=['length'])
        model.add_subsystem('mycomp', TestExplCompSimpleDense(),
                            promotes=['length', 'width', 'area'])

        model.linear_solver = LinearBlockJac(assemble_jac=True)
        prob.setup(check=False)

        with self.assertRaises(RuntimeError) as context:
            prob.run_model()
            self.assertEqual(str(context.exception),
                             "Linear solver 'LN: LNBJ' doesn't support assembled jacobians.")
コード例 #5
0
ファイル: test_linear_block_jac.py プロジェクト: hwangjt/blue
    def test_feature_maxiter(self):
        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        model.nonlinear_solver = NonlinearBlockGS()

        model.linear_solver = LinearBlockJac()
        model.linear_solver.options['maxiter'] = 5

        prob.setup()
        prob.run_model()

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.60230118004, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78022500547, .00001)
コード例 #6
0
    def coupled_group(self):
        # type: () -> Optional[Group]
        """:obj:`Group`, optional: Group wrapping the coupled blocks with a converger specified in the CMDOWS file.

        If no coupled blocks are specified in the CMDOWS file this property is `None`.
        """
        if self.coupled_blocks:
            coupled_group = Group()
            for uid in self.coupled_blocks:
                # Get the correct DisciplineComponent
                discipline_component = self.discipline_components[uid]

                # Change input variable names if they are provided as copies of coupling variables
                promotes = ['*']  # type: List[Union[str, Tuple[str, str]]]
                if not self.has_converger:
                    for i in discipline_component.inputs_from_xml.keys():
                        if i in self.coupling_vars:
                            promotes.append((i, self.coupling_vars[i]['copy']))

                # Add the DisciplineComponent to the group
                coupled_group.add_subsystem(uid, self.discipline_components[uid], promotes)

            # Find the convergence type of the coupled group
            if self.has_converger:
                conv_type = self.elem_problem_def.find('problemFormulation/convergerType').text
                if conv_type == 'Gauss-Seidel':
                    coupled_group.linear_solver = LinearBlockGS()
                    coupled_group.nonlinear_solver = NonlinearBlockGS()
                elif conv_type == 'Jacobi':
                    coupled_group.linear_solver = LinearBlockJac()
                    coupled_group.nonlinear_solver = NonlinearBlockJac()
                else:
                    raise RuntimeError('Specified convergerType "%s" is not supported.' % conv_type)
            else:
                coupled_group.linear_solver = LinearRunOnce()
                coupled_group.nonlinear_solver = NonLinearRunOnce()
            return coupled_group
        return None
コード例 #7
0
ファイル: bug.py プロジェクト: johnjasa/AMIEGO-AMD-OpenMDAO
    def setup(self):
        meta = self.metadata

        general_allocation_data = meta['general_allocation_data']
        allocation_data = meta['allocation_data']

        ref_area_m2 = meta['ref_area_m2']
        Wac_1e6_N = meta['Wac_1e6_N']
        Wpax_N = general_allocation_data['weight_pax_N']
        Mach_mode = meta['Mach_mode']

        propulsion_model = meta['propulsion_model']
        aerodynamics_model = meta['aerodynamics_model']

        initial_mission_vars = meta['initial_mission_vars']

        num_routes = allocation_data['num']

        for ind_r in range(num_routes):
            num_points = int(allocation_data['num_pt'][ind_r])
            num_control_points = int(allocation_data['num_cp'][ind_r])
            range_1e3_km = allocation_data['range_km'][ind_r] / 1e3

            self.add_subsystem('mission_{}'.format(ind_r),
                MissionGroup(
                    num_control_points=num_control_points, num_points=num_points,
                    range_1e3_km=range_1e3_km, ref_area_m2=ref_area_m2,
                    Wac_1e6_N=Wac_1e6_N, Wpax_N=Wpax_N, Mach_mode=Mach_mode,
                    mission_index=ind_r, propulsion_model=propulsion_model,
                    aerodynamics_model=aerodynamics_model,
                    initial_mission_vars=initial_mission_vars,
                ),
                promotes=['pax_flt', 'CLt', 'CDt'],
            )

        self.nonlinear_solver = NonlinearBlockJac()
        self.linear_solver = LinearBlockJac()